分析:選項A,可舉x=
說明錯誤;選項B,正確的應(yīng)為“?x∈R,均有x
2+x+1≥0”;選項C,可由奇函數(shù)的性質(zhì)說明正確;選項D,由三角函數(shù)的知識可得sinx+cosx的值域?yàn)閇
-,
],因?yàn)?span id="fxqnbgs" class="MathJye">
∉[
-,
],故錯誤.
解答:解:選項A,當(dāng)x=
時,sin
=
,cos
=
,顯然有x∈(0,π),但sinx<cosx,故A錯誤;
選項B,命題“?x∈R使得x
2+x+1<0”的否定應(yīng)該為:“?x∈R,均有x
2+x+1≥0”,故B錯誤;
選項C,當(dāng)a=0時,數(shù)f(x)=x
3+x顯然為奇函數(shù),當(dāng)f(x)=x
3+ax
2+x為奇函數(shù)時,由f(0)=0可得a=0,
故“a=0”是“函數(shù)f(x)=x
3+ax
2+x為奇函數(shù)”的充要條件,故C正確;
選項D,sinx+cosx=
sin(x+
)∈[
-,
],因?yàn)?span id="pghaklp" class="MathJye">
∉[
-,
],
故不存在x∈R,使
sinx+cosx=,故D錯誤.
故選C