如圖:已知矩形ABCD,PA平面ABCD,M、N分別是AB、PC的中點
(1)求證:MN∥平面PAD
(2)求證: MNCD.
(3)若 PDA=求證:MN 平面PCD.
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)如圖,一張平行四邊形的硬紙片中,。沿它的對角線把△折起,使點到達平面外點的位置。

(Ⅰ)證明:平面平面;
(Ⅱ)如果△為等腰三角形,求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,己知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,⊥BD垂足為H,PH是四棱錐的高,E為AD中點.

(Ⅰ)證明:PE⊥BC
(Ⅱ)若==60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,都是邊長為2的正三角形,
平面平面平面,.
(1)求點到平面的距離;
(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,,的中點,以為折痕將向上折起,使,且平面平面 
(Ⅰ)求證:;
(Ⅱ)求二面角的大;
(Ⅲ)求點C到面的距離. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖P是四邊形ABCD外一點,PA底面ABCD,ABAD,ACCD,,PA=AB=BC,E是PC的中點

(1)求證CDAE;
(2)求證PD面BAE

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

符合下面哪種條件的多面體一定是長方體
A.直平行六面體B.側(cè)面是矩形的四棱柱
C.對角面是全等的四棱柱D.底面是矩形的直棱柱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在北緯圈上有甲、已兩地,甲地位于東徑,乙地位于西徑,則地球(半徑為R)表面上甲、乙兩地的最短距離為_________                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(如圖所示,四棱錐PABCD的底面ABCD是邊長為a的正方形,側(cè)棱PA=a,PB=PD=a,則它的5個面中,互相垂直的面有         對.

查看答案和解析>>

同步練習冊答案