如圖:已知矩形ABCD,PA
平面ABCD,M、N分別是AB、PC的中點
(1)求證:MN∥平面PAD
(2)求證: MN
CD.
(3)若
PDA=
求證:MN
平面PCD.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)如圖,一張平行四邊形的硬紙片
中,
,
。沿它的對角線
把△
折起,使點
到達平面
外點
的位置。
(Ⅰ)證明:平面
平面
;
(Ⅱ)如果△
為等腰三角形,求二面角
的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,己知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,
⊥BD垂足為H,PH是四棱錐的高,E為AD中點.
(Ⅰ)證明:PE⊥BC
(Ⅱ)若
=
=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,
與
都是邊長為2的正三角形,
平面
平面
,
平面
,
.
(1)求點
到平面
的距離;
(2)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在矩形
中,
,
,
是
的中點,以
為折痕將
向上折起,使
為
,且平面
平面
(Ⅰ)求證:
;
(Ⅱ)求二面角
的大;
(Ⅲ)求點C到面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)如圖P是四邊形ABCD外一點,PA
底面ABCD,AB
AD,AC
CD,
,PA=AB=BC,E是PC的中點
(1)求證CD
AE;
(2)求證PD
面BAE
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
符合下面哪種條件的多面體一定是長方體
A.直平行六面體 | B.側(cè)面是矩形的四棱柱 |
C.對角面是全等的四棱柱 | D.底面是矩形的直棱柱 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在北緯
圈上有甲、已兩地,甲地位于東徑
,乙地位于西徑
,則地球(半徑為R)表面上甲、乙兩地的最短距離為_________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
(如圖所示,四棱錐
P—ABCD的底面
ABCD是邊長為a的正方形,側(cè)棱
PA=a,
PB=
PD=
a,則它的5個面中,互相垂直的面有
對.
查看答案和解析>>