(本小題共12分)如圖,一張平行四邊形的硬紙片
中,
,
。沿它的對角線
把△
折起,使點
到達平面
外點
的位置。
(Ⅰ)證明:平面
平面
;
(Ⅱ)如果△
為等腰三角形,求二面角
的大小。
解:(Ⅰ)證明:因為
,
,
所以
,
。
因為折疊過程中,
,
所以
,又
,故
平面
。
又
平面
,所以平面
平面
。
(Ⅱ)如圖,延長
到
,使
,連結(jié)
,
。
因為
,
,
,
,所以
為正方形,
。
由于
,
都與平面
垂直,所以
,可知
。
因此只有
時,△
為等腰三角形。
在
△
中,
,又
,
所以△
為等邊三角形,
。
由(
Ⅰ)可知,,所以
為二面角
的平面角,即二面角
的大小為
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
如圖,四棱錐
S-
ABCD中,
SD底面
ABCD,
AB//
DC,
ADDC,
AB=
AD=1,
DC=
SD=2,
E為棱
SB上的一點,平面
EDC平面
SBC .
(Ⅰ)證明:
SE=2
EB;
(Ⅱ)求二面角
A-
DE-
C的大小 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分,第(1)小題6分,第(2)小題6分)
如圖,在棱長為1的正方體中,
是棱
的中點,
(1)求證:
;
(2)求
與平面
所成角大。ㄓ梅慈呛瘮(shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,在直三棱柱ABC-A
1B
1C
1中,平面A
1BC⊥側(cè)面A
1ABB
1.
(Ⅰ)求證:AB⊥BC;
(Ⅱ)若直線AC與平面A
1BC所成的角為θ,二面角A
1-BC-A的大小為
φ.判斷θ與
φ的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)19.(本題滿分12分)
如圖,已知四面體ABCD中,
.
(1)指出與面BCD垂直的面,并加以證明.
(2)若AB=BC=1,CD=
,二面角C-AD-B的平面角為
,
,求
的表達式及其取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
本小題滿分12分)
已知斜三棱柱ABC—A
1B
1C
1,
在底面ABC上的射影恰為AC的中點D,又知
w.& (I)求證:AC
1⊥平面A
1BC;
(II)求CC
1到平面A
1AB的距離;
(理)(III)求二面角A—A
1B—C的大小
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
體積為
的球面上有
三點,
,
,
兩點的球面距離為
,則球心到平面
的距離為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖:已知矩形ABCD,PA
平面ABCD,M、N分別是AB、PC的中點
(1)求證:MN∥平面PAD
(2)求證: MN
CD.
(3)若
PDA=
求證:MN
平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H為BC的中點,
(Ⅰ)求證:FH∥平面EDB;
(Ⅱ)求證:AC⊥平面EDB;
(Ⅲ)求四面體B—DEF的體積;
查看答案和解析>>