如圖,將一個(gè)各面都涂了油漆的正方體,切割成125個(gè)同樣大小的小正方體.經(jīng)過(guò)攪拌后,從中隨機(jī)取出一個(gè)小正方體,記它的涂油漆面數(shù)為X,則X的均值為E(X)=________.
用分布列解決這個(gè)問(wèn)題,根據(jù)題意易知X=0,1,2,3.列表如下:
X
0
1
2
3
ξ




所以E(X)=0×+1×+2×+3×.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

(1)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);
(2)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo)





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)試分別估計(jì)元件A、元件B為正品的概率;
(2)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(1)的前提下;
(i)求生產(chǎn)5件元件B所獲得的利潤(rùn)不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為,科目B每次考試成績(jī)合格的概率均為.假設(shè)各次考試成績(jī)合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求 的分布列及數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名作為樣本測(cè)量身高.據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學(xué)生參加學(xué);@球隊(duì),用ξ表示從第八組中取到的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

甲乙兩人分別獨(dú)立參加某高校自主招生面試,若甲、乙能通過(guò)面試的概率都是,則面試結(jié)束后通過(guò)的人數(shù)X的數(shù)學(xué)期望是(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再?gòu)倪@批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);如果n=4,再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過(guò)檢驗(yàn).
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.
(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩射手在同一條件下進(jìn)行射擊,分布列如下:射手甲擊中環(huán)數(shù)8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環(huán)數(shù)8,9,10的概率分別為0.4,0.2,0.4.用擊中環(huán)數(shù)的期望與方差比較兩名射手的射擊水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

電視臺(tái)綜藝頻道組織的闖關(guān)游戲,游戲規(guī)定前兩關(guān)至少過(guò)一關(guān)才有資格闖第三關(guān),闖關(guān)者闖第一關(guān)成功得3分,闖第二關(guān)成功得3分,闖第三關(guān)成功得4分.現(xiàn)有一位參加游戲者單獨(dú)闖第一關(guān)、第二關(guān)、第三關(guān)成功的概率分別為、、,記該參加者闖三關(guān)所得總分為ξ.
(1)求該參加者有資格闖第三關(guān)的概率;
(2)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案