【題目】設(shè) 的內(nèi)角 的對(duì)邊分別為 已知 .
(1)求角 ;
(2)若 , ,求 的面積.
【答案】(1)
(2)
【解析】
(1)直接利用正弦定理和三角函數(shù)關(guān)系式的恒等變換求出結(jié)果.(2)利用(1)的結(jié)論,余弦定理及三角形的面積公式求出結(jié)果.
(1)∵b=a(cosC﹣sinC),
∴由正弦定理得sinB=sinAcosC﹣sinAsinC,
可得sin(A+C)=sinAcosC+cosAsinC=sinAcosC﹣sinAsinC,
∴cosAsinC=﹣sinAsinC,
由sinC≠0,得sinA+cosA=0,
∴tanA=﹣1,
由A為三角形內(nèi)角,
可得.
(2)因?yàn)?/span>,
所以由正弦定理可得b=c,
因?yàn)?/span>a2=b2+c2﹣2bccosA,,
可得c=,所以b=2,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長(zhǎng)為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線過(guò)點(diǎn)且漸近線為,則下列結(jié)論正確的個(gè)數(shù)為( )
①的實(shí)軸長(zhǎng)為;②的離心率為;
③曲線經(jīng)過(guò)的一個(gè)焦點(diǎn);④直線與有兩個(gè)公共點(diǎn).
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過(guò)點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線經(jīng)過(guò)點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過(guò)原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;
(3)若過(guò)雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬(wàn)元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)圓上任意一點(diǎn),的取值與,無(wú)關(guān),則實(shí)數(shù)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式的解集是,求不等式的解集;
(2)當(dāng)時(shí),對(duì)任意的都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△MBC中,MA是BC邊上的高,MA=3,AC=4,將△MBC沿MA進(jìn)行翻折,使得∠BAC=90°如圖,再過(guò)點(diǎn)B作BD∥AC,連接AD,CD,MD且,∠CAD=30°.
(1)求證:平面MCD⊥平面MAD;
(2)求點(diǎn)B到平面MAD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com