如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1.

(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

(1)證明見解析;(2)1.

解析試題分析:(1)設線段的中點為,易得四邊形為平行四邊形,得,又,
,,所以平面平面;
(2)因為平面,所以是三棱柱的高,所以三棱柱的體積,通過計算即可得出三棱柱的體積.
試題解析:(1) 設線段的中點為.
是棱柱的對應棱

同理,是棱柱的對應棱


四邊形為平行四邊形

,,
平面平面
(2) 平面
是三棱柱的高
在正方形中,.在中,,
三棱柱的體積.
所以,三棱柱的體積.
考點:1.面面平行的判定定理;2.棱柱的體積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖的幾何體中,平面為正方形,平面為等腰梯形,,,,.

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE平面CDE,AE=3.

(1)若的中點,求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求EC與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點.

(1)若,求證:平面平面;
(2)點在線段上,,試確定的值,使平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中,分別是棱、的中點,點在棱上,已知,,

(1)求證:平面;
(2)設點在棱上,當為何值時,平面平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四棱錐中,底面是個邊長為的正方形,側棱底面,且,的中點.

(I)證明:平面;
(II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,垂直于圓所在的平面,是圓上的點.

(1)求證:平面平面;
(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案