如圖,設(shè)M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能地任取一點(diǎn)N,連結(jié)MN,則弦MN的長超過的概率為(    )

A.                B.                   C.                D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護(hù)區(qū),從保護(hù)區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護(hù)區(qū)邊緣PQ弧上選擇一點(diǎn)A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價(jià)為a萬元,通往高速公路的道路AB每公里造價(jià)是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價(jià)為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)m=
6
+
2
2
時(shí),如何確定A點(diǎn)的位置才能使得總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,現(xiàn)有一塊半徑為2m,圓心角為90°的扇形鐵皮AOB,欲從其中裁剪出一塊內(nèi)接五邊形
ONPQR,使點(diǎn)P在AB弧上,點(diǎn)M,N分別在半徑OA和OB上,四邊形PMON是矩形,點(diǎn)Q在弧AP上,R點(diǎn)在線段AM上,四邊形PQRM是直角梯形.現(xiàn)有如下裁剪方案:先使矩形PMON的面積達(dá)到最大,在此前提下,再使直角梯形PQRM的面積也達(dá)到最大.
(Ⅰ)設(shè)∠BOP=θ,當(dāng)矩形PMON的面積最大時(shí),求θ的值;
(Ⅱ)求按這種裁剪方法的原材料利用率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某市政府決定在以政府大樓O為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書館的正面要朝市政府大樓.設(shè)扇形的半徑OM=R ,,OB與OM之間的夾角為.

(Ⅰ)將圖書館底面矩形ABCD的面積S表示成的函數(shù).

(Ⅱ)若 R=45 m,求當(dāng)為何值時(shí),矩形ABCD的面積S有最大值?其最大值是多少?(精確到0.01m2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三12月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)如圖所示,某市政府決定在以政府大樓O為中心、正北方向

和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書館.為了充分利用這塊土地,并考

慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書館的正

面要朝市政府大樓.設(shè)扇形的半徑OM=R ,,OB與OM之間的夾角為.

(1)將圖書館底面矩形ABCD的面積S表示成的函數(shù).

(2)若 R=45 m,求當(dāng)為何值時(shí),矩形ABCD的面積S有最大值?

其最大值是多少?

 

 

查看答案和解析>>

同步練習(xí)冊答案