已知向量a=,b=(2cosx,cos2x),函數(shù)f(x)=a•b.
(Ⅰ)求函數(shù)f(x)的解析式和它的單調(diào)遞減區(qū)間;
(Ⅱ)請(qǐng)根據(jù)y=f(x)的圖象是由y=sinx的圖象平移和伸縮變換得到的過(guò)程,補(bǔ)充填寫下面的內(nèi)容.
(以下兩小題任選一題,兩題都做,以第1小題為準(zhǔn))
①把y=sinx的圖象由______得到______的圖象,再把得到的圖象上的所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的一半(縱坐標(biāo)不變),得到______的圖象,最后把圖象上的所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(橫坐標(biāo)不變),得到______的圖象;
②把y=sinx的圖象上的所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的一半(縱坐標(biāo)不變),得到______的圖象,再將得到的圖象向左平移______單位,得到______的圖象;最后把圖象上的所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(橫坐標(biāo)不變),得到______的圖象.
【答案】分析:(I)把a(bǔ),b代入函數(shù)f(x)=a•b,即可得到函數(shù)f(x)的解析式,對(duì)解析式化簡(jiǎn)整理得f(x)=2sin(2x+),再根據(jù)正弦函數(shù)的單調(diào)性得出單調(diào)遞減區(qū)間.
(II)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象左加右減,上加下減的原則即可得出答案.
解答:解:(I)
==



(II)①左平移個(gè)單位;
;
;
;
②y=sin2x,


點(diǎn)評(píng):本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換和正弦函數(shù)的單調(diào)性問(wèn)題.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=1,|
b
|=2,且
a
b
方向上的投影與
b
a
方向上的投影相等,則|
a
-
b
|等于( 。
A、3
B、
5
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足
a
=(x,2),
b
=(1,-3)
,且(2
a
+
b
b

(1)求向量
a
的坐標(biāo);     
(2)求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果命題“?p”與命題“p或q”都是真命題,那么命題q一定是真命題;
②已知向量
a
,
b
滿足|
a
|=1,|
b
|=4
,且
a
b
=2
,則
a
b
的夾角為
π
6
;
③若函數(shù)f(x+1)是奇函數(shù),f(x-1)是偶函數(shù),且f(0)=2,則f(2012)=2;
④已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),函數(shù)g(x)=log4(a•2x-
4
3
a)
,若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(1,+∞).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
c
滿足
a
+
b
+
c
=0,且
a
c
的夾角為60°,|b|=
3
|a|
,則tan<
a
b
≥( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
,且|
a
|=1,|
b
|=2,則|2
b
-
a
|的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案