【題目】已知.

(Ⅰ)當(dāng),若關(guān)于的方程有且只有兩個不同的實根求實數(shù)的取值范圍;

(Ⅱ)對任意,不等式恒成立的值.

【答案】(Ⅰ) ;(Ⅱ)1.

【解析】試題分析

(Ⅰ) 當(dāng) 結(jié)合圖象可得若方程有且只有兩個不同的實根,只需即可.(Ⅱ)由題意得只需滿足即可,根據(jù)函數(shù)圖象的對稱軸與區(qū)間的關(guān)系及拋物線的開口方向求得函數(shù)的最值,然后解不等式可得所求.

試題解析:

(Ⅰ)當(dāng), ,

∵關(guān)于的方程有且只有兩個不同的實根,

,

.

∴實數(shù)的取值范圍為

(Ⅱ)①當(dāng) ,函數(shù)在區(qū)間上單調(diào)遞增,

不等式恒成立,

,可得

解得,矛盾,不合題意.

②當(dāng),,函數(shù)在區(qū)間上單調(diào)遞減,

不等式恒成立,

,可得

解得,這與矛盾,不合題意.

③當(dāng),,

不等式恒成立,

,整理得 ,

,即

,解得.

當(dāng),,故.

.

綜上可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖程序框圖輸出的結(jié)果為(
A.52
B.55
C.63
D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形, 平面 ,

的中點.

(1)求證: 平面;

(2)求證:平面平面;

(3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如下表所示:

價格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價格應(yīng)定為多少?
注:在回歸直線y= 中, , = =146.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程. .

(1)若是從0、1、2、3四個數(shù)中任取的一個數(shù), 是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率;

(2)若是從區(qū)間任取的一個數(shù), 是從區(qū)間任取的一個數(shù),求上述方程有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題px∈R,x ≥2;命題qx0 ,使sin x0+cos x0 ,
則下列命題中為真命題的是( )
A.( p)∧q
B.p∧( q)
C.( p)∧( q)
D.pq

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形, , , ,設(shè)是線段中點.

(1)求證: 平面

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=的定義域為R.

(1)a的取值范圍;

(2)若函數(shù)f(x)的最小值為,解關(guān)于x的不等式x2-x-a2-a<0.

查看答案和解析>>

同步練習(xí)冊答案