【題目】已知等差數(shù)列{an}的公差d≠0,其前n項(xiàng)和為Sn , 若S9=99,且a4 , a7 , a12成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若 ,證明: .
【答案】解:(Ⅰ)因?yàn)榈炔顢?shù)列{an}的公差d≠0,其前n項(xiàng)和為Sn , S9=99, ∴a5=11,
由a4 , a7 , a12成等比數(shù)列,得 ,
即(11+2d)2=(11﹣d)(11+7d),∵d≠0,∴d=2,
∴a1=11﹣4×2=3,
故an=2n+1
證明:(Ⅱ) =n(n+2), = = ,
∴
= [(1﹣ )+( )+( )+…+( )+( )]
= [1+ ]= ,
故 .
【解析】(Ⅰ)由S9=99,求出a5=11,由a4 , a7 , a12成等比數(shù)列,求出d=2,由此能求出數(shù)列{an}的通項(xiàng)公式.(Ⅱ)求出 =n(n+2),從而 = = ,由此利用裂項(xiàng)求和法能證明 .
【考點(diǎn)精析】關(guān)于本題考查的等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,需要了解通項(xiàng)公式:或;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù) 在x 1處的切線方程;
(2)若存在 ,使得 成立,其中 為常數(shù),
求證: ;
(3)若對任意的 ,不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖. (Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ﹣N(μ,σ2),則p(μ﹣σ<ξ≤μ+σ)=0.6826,p(μ﹣2σ<ξ≤μ+2σ)=0.9544,p(μ﹣3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|. (Ⅰ)當(dāng)m=a=﹣1時(shí),求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立時(shí),實(shí)數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實(shí)數(shù)m的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,則該算法的功能是( )
A.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)ξ表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生個(gè)數(shù),求ξ的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q= (Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn= ,求{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點(diǎn),E的準(zhǔn)線與x軸交于點(diǎn)C,△CAB的面積為4,以點(diǎn)D(3,0)為圓心的圓D過點(diǎn)A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點(diǎn),求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com