【題目】已知函數(shù),(其中),.

1)若對定義域內(nèi)的任意實數(shù)x恒成立,求實數(shù)a的取值范圍;

2)若有兩個極值點,,且,求的取值范圍.

【答案】1;(2.

【解析】

1)由整理可得,設(shè),利用導(dǎo)函數(shù)求得的最小值,即可求解;

2)先對求導(dǎo),轉(zhuǎn)化問題為方程有兩個正根,,且,可得,解得,再由韋達(dá)定理可得,解得,則可整理,設(shè),進(jìn)而求得的范圍即可.

1)因為,即,

所以,

,則,

,則上的增函數(shù),

,故時,時,,

所以當(dāng)時,;當(dāng)時,,

上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時,的極小值為1,

因為,所以,

a的取值范圍是.

2,

,

因為有兩個極值點,,且,

則方程有兩個正根,,且,

所以,解得,

,得,即,

所以

,

設(shè),

,所以上為減函數(shù),

所以,所以取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),曲線軸交于兩點.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

1)求直線的普通方程及曲線的極坐標(biāo)方程;

2)若直線與曲線在第一象限交于點,且線段的中點為,點在曲線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電信運營公司為響應(yīng)國家5G網(wǎng)絡(luò)建設(shè)政策,擬實行5G網(wǎng)絡(luò)流量階梯定價.每人月用流量中不超過(一種流量計算單位)的部分按2收費;超出的部分按4收費.從用戶群中隨機(jī)調(diào)查了10000位用戶,獲得了他們某月的流量使用數(shù)據(jù).整理得到如下的頻率分布直方圖:

1)若為整數(shù),依據(jù)本次調(diào)查,為使80以上用戶在該月的流量價格為2,至少定為多少?

2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)時,試估計用戶該月的人均流量費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由nnN*)個正整數(shù)構(gòu)成的集合A{a1,a2,an}a1a2an,n≥3),記SAa1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.

1)求a1,a2的值;

2)求證:a1a2,an成等差數(shù)列的充要條件是;

3)若SA2020,求n的最小值,并指出n取最小值時an的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得福卡(愛國福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

合計

30

10

40

35

5

40

合計

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

(2)計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

參考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為1的正三角形,點P所在的平面內(nèi),且a為常數(shù)),下列結(jié)論中正確的是( )

A.當(dāng)時,滿足條件的點P有且只有一個

B.當(dāng)時,滿足條件的點P有三個

C.當(dāng)時,滿足條件的點P有無數(shù)個

D.當(dāng)a為任意正實數(shù)時,滿足條件的點總是有限個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線與拋物線交于兩點,分別過作拋物線的切線,兩切線交于點.

1)若直線變動時,點始終在以為直徑的圓上,求動點的軌跡方程;

2)設(shè)圓,若直線與圓相切于點(點在線段上).是否存在點使得?若存在,求出點坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

1)若恰有兩個零點,求實數(shù)的取值范圍;

2)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.

查看答案和解析>>

同步練習(xí)冊答案