若函數(shù)h(x)滿足
(1)h(0)=1,h(1)=0;
(2)對(duì)任意,有h(h(a))=a;
(3)在(0,1)上單調(diào)遞減。則稱h(x)為補(bǔ)函數(shù)。已知函數(shù)
(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
(2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時(shí)h(x)的中介元為xn,且,若對(duì)任意的,都有Sn< ,求的取值范圍;
(3)當(dāng)=0,時(shí),函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。
見解析
(1)函數(shù)是補(bǔ)函數(shù)。證明如下:
;
;
③令,有,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214238079629.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),,所以在(0,1)上單調(diào)遞減,故函數(shù)在(0,1)上單調(diào)遞減。
(2)  當(dāng),由,得: 
①當(dāng)時(shí),中介元;
②當(dāng)時(shí),由(*)可得;
得中介元,綜上有對(duì)任意的,中介元
于是,當(dāng)時(shí),有=
當(dāng)n無(wú)限增大時(shí), 無(wú)限接近于, 無(wú)限接近于,故對(duì)任意的,成立等價(jià)于,即 ;
(3)  當(dāng)時(shí), ,中介元是
①當(dāng)時(shí), ,中介元為,所以點(diǎn)不在直線y=1-x的上方,不符合條件;
②當(dāng)時(shí),依題意只須時(shí)恒成立,也即時(shí)恒成立,設(shè),則,
可得,且當(dāng)時(shí),,當(dāng)時(shí),,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214239155603.png" style="vertical-align:middle;" />=1,所以當(dāng)時(shí), 恒成立。
綜上:p的取值范圍為(1,+)。
【點(diǎn)評(píng)】本題考查導(dǎo)數(shù)的應(yīng)用、函數(shù)的新定義,函數(shù)與不等式的綜合應(yīng)用以及分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想.高考中,導(dǎo)數(shù)解答題一般有以下幾種考查方向:一、導(dǎo)數(shù)的幾何意義,求函數(shù)的單調(diào)區(qū)間;二、用導(dǎo)數(shù)研究函數(shù)的極值,最值;三、用導(dǎo)數(shù)求最值的方法證明不等式.來年需要注意用導(dǎo)數(shù)研究函數(shù)最值的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于企業(yè)來說,生產(chǎn)成本、銷售收入和利潤(rùn)之間的關(guān)系是個(gè)重要的問題.對(duì)一家藥品生產(chǎn)企業(yè)的研究表明,該企業(yè)的生產(chǎn)成本y(單位:萬(wàn)元)和生產(chǎn)收入z(單位:萬(wàn)元)都是產(chǎn)量x(單位:t)的函數(shù),分別為: ,Z=18x
①試寫出該企業(yè)獲得的生產(chǎn)利潤(rùn)w(單位:萬(wàn)元)與產(chǎn)量x之間的函數(shù)關(guān)系式;
②當(dāng)產(chǎn)量為多少時(shí),該企業(yè)可獲得最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

地震的震級(jí)R與地震釋放的能量E的關(guān)系為.  2011年3月11日,日本東海岸發(fā)生了9.0級(jí)特大地震,2008年中國(guó)汶川的地震級(jí)別為8.0級(jí),那么2011年地震的能量是2008年地震能量的        倍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215128495315.png" style="vertical-align:middle;" />,若存在非零實(shí)數(shù)使得對(duì)于任意,有,且,則稱上的高調(diào)函數(shù)。如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215129182303.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),當(dāng)時(shí),,且上的4高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù).當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求;
(Ⅱ)求函數(shù)圖象上的點(diǎn)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在函數(shù)的圖象上有、三點(diǎn),橫坐標(biāo)分別為其中
⑴求的面積的表達(dá)式;
⑵求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)為定義在R上的奇函數(shù),當(dāng)時(shí),為常數(shù)),則            ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),,則(  )
A.0B.C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案