【題目】設直線l的方程為(a+1)x+y+2-a=0(aR).

1若l在兩坐標軸上的截距相等,求l的方程;

2若l不經過第二象限,求實數(shù)a的取值范圍.

【答案】(1);(2)

【解析】

試題分析:(1)直線在兩坐標軸上的截距相等,即與兩坐標軸交點的橫(縱)坐標相等,所以先求得兩交點的坐標,然后列等式求解即可;(2)當直線不經過第二象限時,有三種可能:一,直線與縱軸平行且與橫軸的非負半軸相交;二,與橫軸平行且與縱軸的非負半軸相交;三,直線的斜率為正數(shù),且原點在直線的上方;據(jù)此列不等式求實數(shù)的取值范圍.

試題解析:(1)當a=-1時,直線l的方程為y+3=0,不符合題意;

當a≠-1時,直線l在x軸上的截距為,在y軸上的截距為a-2,因為l在兩坐標軸上的截距相等,所以,解得a=2或a=0,

所以直線l的方程為3x+y=0或x+y+2=0.

(2)將直線l的方程化為y=-(a+1)x+a-2,所以所以,

解得a≤-1. 綜上所述,a≤-1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過,若有4個不同的正數(shù)滿足,且,則從這四個數(shù)中任意選出兩個,它們的和不超過5的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸,焦距為2,且長軸長是短軸長的倍.

1)求橢圓的標準方程;

2)設,過橢圓左焦點的直線兩點,若對滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[60,70

[70,80

[80,90

[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程x2y22(m3)x2(14m2)y16m490表示一個圓.

(1) 求實數(shù)m的取值范圍;

(2) 求該圓半徑r的取值范圍;

(3) 求該圓心的縱坐標的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】條件;條件:直線與圓相切,則的( )

A. 充分必要條件 B. 必要不充分條件

C. 充分不必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米.

(Ⅰ求底面積,并用含x的表達式表示池壁面積;

(Ⅱ怎樣設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

I)設,求的單調區(qū)間;

II)若處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案