【題目】已知函數(shù)

1,求函數(shù)的表達式;

21的條件下,設(shè)函數(shù),若上是單調(diào)函數(shù),求實數(shù)的取值范圍;

3是否存在使得函數(shù)上的最大值是4?若存在,求出的值;若不存在,請說明理由。

【答案】1;2;3存在,

【解析】

試題分析:1,所以,此時函數(shù)21的條件下,函數(shù)為二次函數(shù),對稱軸為,若函數(shù)在區(qū)間上是單調(diào)函數(shù),則應(yīng)滿足,解得:;3函數(shù)的對稱軸方程為,分兩種情況進行討論,當(dāng)時,開口向上,對稱軸,此時函數(shù)在區(qū)間上的最大值應(yīng)在時取得,即,解得:矛盾,當(dāng)時,開口向下,此時函數(shù)最大值應(yīng)在處取得,經(jīng)驗證,在處取得最大值均不符合題意,若在處取得最大值,則,整理得,所以,此時對稱軸分別為,均符合題意。

試題解析:1 解得

21可得

其對稱軸方程為

上為增函數(shù),則,解得

上為減函數(shù),則,解得

綜上可知,的取值范圍為

3假設(shè)存在滿足條件的,則的最大值只可能在處取得,

其中

,則有 的值不存在,舍去

,則有,解得

時,對稱軸,

則最大值應(yīng)在處取得,與條件矛盾,舍去

,則,且,

化簡得,解得 13分

綜上可知,當(dāng)時,函數(shù)上的最大值是4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年騎車鍛煉越來越受到人們的喜愛男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進行社會實踐,對年齡段的人群隨機抽取人進行了一次你是否喜歡騎車鍛煉的問卷,將被調(diào)查人員分為喜歡騎車不喜歡騎車,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(1)補全頻率分布直方圖,并的值;

(2)從歲年齡段的喜歡騎車中采用分層抽樣法抽取6人參加騎車鍛煉體驗活動,求其中選取2名領(lǐng)隊來自同一組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為

(1)求圓的方程;

(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;

(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點,問是否為定值?若是,請求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查200名50歲以上有吸煙習(xí)慣與患慢性氣管炎的人的情況,獲數(shù)據(jù)如下

患慢性氣管炎

未患慢性氣管炎

總計

吸煙

30

100

不吸煙

35

100

合計

105

95

200

1表中,的值分別是多少;

2試問:有吸煙習(xí)慣與患慢性氣管炎病是否有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1判斷函數(shù)的奇偶性并證明;

2證明是定義域內(nèi)的增函數(shù);

3解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高中三個年級共有學(xué)生名,各年級男生、女生的人數(shù)如下表:

高一年級

高二年級

高三年級

男生

女生

已知在高中學(xué)生中隨機抽取一名同學(xué)時,抽到高三年級女生的概率為.

)求的值;

)現(xiàn)用分層抽樣的方法在全校抽取名學(xué)生,則在高二年級應(yīng)抽取多少名學(xué)生?

)已知,求高二年級男生比女生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a=log0.60.8,b=log1.20.9,c=1.10.8 , 則a、b、c由小到大的順序是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α:x>m,β:1≤x<3,若α是β的必要條件,則實數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案