【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間(滿分100分,成績(jī)不低于40分),現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(Ⅱ)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)的概率.
【答案】(1)65分(2)
【解析】試題分析:(1)個(gè)矩形中點(diǎn)橫坐標(biāo)與縱坐標(biāo)的積求和即可求平均數(shù),最高矩形中點(diǎn)橫坐標(biāo)即為眾數(shù);(2)用列舉法求出從成績(jī)大于等于分的學(xué)生中隨機(jī)選名學(xué)生的事件個(gè)數(shù),查出至少有名學(xué)生成績(jī)?cè)?/span>的事件個(gè)數(shù),然后直接利用古典概型概率計(jì)算公式求解.
試題解析:(1)因各組的頻率之和為1,所以成績(jī)?cè)趨^(qū)間內(nèi)的頻率為
,
所以平均分 分,
眾數(shù)的估計(jì)值是65分
(2)設(shè)表示事件“在成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)”,由題意可知成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生所選取的有: ,記這4名學(xué)生分別為, , , ,
成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生有(人),記這2名學(xué)生分別為, ,
則從這6人中任選2人的基本事件事件空間為:
共15種,
事件“至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)”的可能結(jié)果為:
,共九種,
所以.
故所求事件的概率為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).
(1)求的長(zhǎng);
(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線是函數(shù)圖象的一條對(duì)稱(chēng)軸.
(1)求的值,并求的解析式;
(2)若關(guān)于的方程在區(qū)間上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的圖象是由圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,然后再向左平移個(gè)單位得到,若, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線過(guò)點(diǎn),其傾斜角為,以原點(diǎn)為極點(diǎn),以正半軸為極軸建立極坐標(biāo),并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位,圓的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程和圓的普通方程;
(2)設(shè)圓與直線交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)若函數(shù))在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若當(dāng)時(shí),方程有實(shí)數(shù)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, , )的一系列對(duì)應(yīng)最值如表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)軸;
(3)若當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中, 是的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求出該幾何體的體積;
(2)若是的中點(diǎn),求證: 平面;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com