【題目】4名運(yùn)動(dòng)員參加一次乒乓球比賽,每名運(yùn)動(dòng)員都賽場(chǎng)并決出勝負(fù).設(shè)第位運(yùn)動(dòng)員共勝場(chǎng),負(fù)場(chǎng),則錯(cuò)誤的結(jié)論是( )
A.
B.
C. 為定值,與各場(chǎng)比賽的結(jié)果無(wú)關(guān)
D. 為定值,與各場(chǎng)比賽結(jié)果無(wú)關(guān)
【答案】D
【解析】
對(duì)每一個(gè)選項(xiàng)逐一分析得解.
由題得所有勝的場(chǎng)數(shù)為6場(chǎng),所有負(fù)的場(chǎng)數(shù)為6場(chǎng),
對(duì)于選項(xiàng)A,根據(jù)已知得到所有勝的場(chǎng)數(shù)的和和負(fù)的場(chǎng)數(shù)的和是相等的,所以,所以該選項(xiàng)是正確的;
對(duì)于選項(xiàng)B,假設(shè)四個(gè)運(yùn)動(dòng)員勝的場(chǎng)數(shù)分別為1、2、1、2,負(fù)的場(chǎng)數(shù)分別為2、1、2、1,顯然滿(mǎn)足,所以該選項(xiàng)是正確的;
對(duì)于選項(xiàng)C, 與各場(chǎng)比賽的結(jié)果無(wú)關(guān),所以該選項(xiàng)是正確的;
對(duì)于選項(xiàng)D,不一定為定值,如勝的場(chǎng)數(shù)可以是1,2,1,2,也可以是1,1,1,3,但是,所以該選項(xiàng)是錯(cuò)誤的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B分別是雙曲線(xiàn)的左右頂點(diǎn),設(shè)過(guò)的直線(xiàn)PA,PB與雙曲線(xiàn)分別交于點(diǎn)M,N,直線(xiàn)MN交x軸于點(diǎn)Q,過(guò)Q的直線(xiàn)交雙曲線(xiàn)的于S,T兩點(diǎn),且,則的面積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線(xiàn)方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線(xiàn)與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿(mǎn)足軸,.
(1)求橢圓E的離心率;
(2)過(guò)點(diǎn)的直線(xiàn)l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線(xiàn)l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過(guò)原點(diǎn)的直線(xiàn)l與圓C有公共點(diǎn).
(1)求直線(xiàn)l斜率k的取值范圍;
(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P為圓C上的任意一點(diǎn),求線(xiàn)段OP的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率為且四個(gè)頂點(diǎn)構(gòu)成面積為的菱形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率不為0的直線(xiàn)與橢圓交于,兩點(diǎn),記中點(diǎn)為,坐標(biāo)原點(diǎn)為,直線(xiàn)交橢圓于,兩點(diǎn),當(dāng)四邊形的面積為時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】6月12日,上海市發(fā)布了《上海市生活垃圾分類(lèi)投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類(lèi).某幢樓前有四個(gè)垃圾桶,分別標(biāo)有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報(bào)紙(可回收物)全部投入到這四個(gè)桶中,若每種垃圾投放到每個(gè)桶中都是等可能的,那么隨機(jī)事件“4種垃圾中至少有2種投入正確的桶中”的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).
(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)曲線(xiàn)C經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com