【題目】4名運(yùn)動(dòng)員參加一次乒乓球比賽,每名運(yùn)動(dòng)員都賽場(chǎng)并決出勝負(fù).設(shè)第位運(yùn)動(dòng)員共勝場(chǎng),負(fù)場(chǎng),則錯(cuò)誤的結(jié)論是( )

A.

B.

C. 為定值,與各場(chǎng)比賽的結(jié)果無(wú)關(guān)

D. 為定值,與各場(chǎng)比賽結(jié)果無(wú)關(guān)

【答案】D

【解析】

對(duì)每一個(gè)選項(xiàng)逐一分析得解.

由題得所有勝的場(chǎng)數(shù)為6場(chǎng),所有負(fù)的場(chǎng)數(shù)為6場(chǎng),

對(duì)于選項(xiàng)A,根據(jù)已知得到所有勝的場(chǎng)數(shù)的和和負(fù)的場(chǎng)數(shù)的和是相等的,所以,所以該選項(xiàng)是正確的;

對(duì)于選項(xiàng)B,假設(shè)四個(gè)運(yùn)動(dòng)員勝的場(chǎng)數(shù)分別為1、2、1、2,負(fù)的場(chǎng)數(shù)分別為2、1、21,顯然滿(mǎn)足,所以該選項(xiàng)是正確的;

對(duì)于選項(xiàng)C, 與各場(chǎng)比賽的結(jié)果無(wú)關(guān),所以該選項(xiàng)是正確的;

對(duì)于選項(xiàng)D,不一定為定值,如勝的場(chǎng)數(shù)可以是1,2,1,2,也可以是1,1,1,3,但是,所以該選項(xiàng)是錯(cuò)誤的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)AB分別是雙曲線(xiàn)的左右頂點(diǎn),設(shè)過(guò)的直線(xiàn)PAPB與雙曲線(xiàn)分別交于點(diǎn)M,N,直線(xiàn)MNx軸于點(diǎn)Q,過(guò)Q的直線(xiàn)交雙曲線(xiàn)的于ST兩點(diǎn),且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè)函數(shù)處的切線(xiàn)方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線(xiàn)與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿(mǎn)足軸,

1)求橢圓E的離心率;

2)過(guò)點(diǎn)的直線(xiàn)l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線(xiàn)l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y24x+30,過(guò)原點(diǎn)的直線(xiàn)l與圓C有公共點(diǎn).

1)求直線(xiàn)l斜率k的取值范圍;

2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P為圓C上的任意一點(diǎn),求線(xiàn)段OP的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱錐PABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

1)求證:BD⊥平面PAC;

2)求二面角PCDB余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為且四個(gè)頂點(diǎn)構(gòu)成面積為的菱形.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)且斜率不為0的直線(xiàn)與橢圓交于兩點(diǎn),記中點(diǎn)為,坐標(biāo)原點(diǎn)為,直線(xiàn)交橢圓于兩點(diǎn),當(dāng)四邊形的面積為時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】612日,上海市發(fā)布了《上海市生活垃圾分類(lèi)投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類(lèi).某幢樓前有四個(gè)垃圾桶,分別標(biāo)有可回收物、有害垃圾、濕垃圾干垃圾,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報(bào)紙(可回收物)全部投入到這四個(gè)桶中,若每種垃圾投放到每個(gè)桶中都是等可能的,那么隨機(jī)事件“4種垃圾中至少有2種投入正確的桶中的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).

(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;

(2)設(shè)曲線(xiàn)C經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案