【題目】已知函數(shù)f(x)= sin(2x+ )﹣cos2x+ .
(Ⅰ)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,f(A)= ,a=3,求△ABC面積的最大值.
【答案】解:(Ⅰ)f(x)= ( sin2x+ cos2x)﹣ cos2x= ( sin2x+ cos2x)= sin(2x+ ),
由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z得:kπ﹣ ≤x≤kπ+ ,k∈Z,
∵x∈[0,π],
∴函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間為[0, ],[ ,π];
(Ⅱ)由f(A)= sin(2A+ )= 得:sin(2A+ )= ,
∵0<A<π,
∴ <2A+ < ,
∴2A+ = ,
∴A= ,
由余弦定理知a2=9=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc,
∴bc≤9(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立),
∴S= bcsinA≤ ×9× = ,
∴△ABC面積的最大值為
【解析】(Ⅰ)函數(shù)f(x)解析式利用兩角和與差的正弦函數(shù)公式,二倍角的余弦函數(shù)公式化簡(jiǎn),整理為一個(gè)角的正弦函數(shù),利用正弦函數(shù)的單調(diào)性確定出f(x)在[0,π]上的單調(diào)遞增區(qū)間即可;(Ⅱ)由f(A)的值,確定出A的度數(shù),利用余弦定理求出bc的最大值,進(jìn)而求出三角形ABC面積的最大值即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正弦函數(shù)的單調(diào)性和正弦定理的定義,掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);正弦定理:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位打字員在兩臺(tái)電腦上各自輸入A,B兩種類型的文件的部分文字才能使這兩類文件成為成品.已知A文件需要甲輸入0.5小時(shí),乙輸入0.2小時(shí);B文件需要甲輸入0.3小時(shí),乙輸入0.6小時(shí).在一個(gè)工作日中,甲至多只能輸入6小時(shí),乙至多只能輸入8小時(shí),A文件每份的利潤(rùn)為60元,B文件每份的利潤(rùn)為80元,則甲、乙兩位打字員在一個(gè)工作日內(nèi)獲得的最大利潤(rùn)是元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅(公元前5~6世紀(jì))是我國(guó)齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子.他提出了一條原理:“冪勢(shì)既同,則積不容異.”這里的“冪”指水平截面的面積,“勢(shì)”指高.這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.設(shè)由橢圓 =1(a>b>0)所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖)(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請(qǐng)類比此法,求出橢球體體積,其體積等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函數(shù)f(x)的對(duì)稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移 個(gè)單位,得到函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是( )
A.5800
B.6000
C.6200
D.6400
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(1﹣m)lnx+ ﹣x,m∈R且m≠0.
(Ⅰ)當(dāng)m=2時(shí),令g(x)=f(x)+log2(3k﹣1),k為常數(shù),求函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式f(x)>1﹣ 在x∈[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx(a∈R,a為常數(shù))
(1)當(dāng)a=﹣1時(shí),若方程f(x)= 有實(shí)根,求b的最小值;
(2)設(shè)F(x)=f(x)e﹣x , 若F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,圓: 的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作互相垂直的兩條直線,且交橢圓于兩點(diǎn),直線交圓于, 兩點(diǎn),且為的中點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是 ①對(duì)于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com