如圖,用鐵絲彎成一個上面是半圓,下面是矩形的圖形,其面積為,
為使所用材料最省,底寬應為多少米?

當?shù)讓挒?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/7/1twiu2.png" style="vertical-align:middle;" />m時,所用材料最省.

解析試題分析:設矩形的底寬為xm,則半圓的半徑為m,
,求導可得,當時,;當時,,那么是函數(shù)的極小值點,也是最小值點.
解:如圖,設矩形的底寬為xm,則半圓的半徑為m,
半圓的面積為m2,所以矩形的面積為m2
所以矩形的另一邊長為m.                (2分)
因此鐵絲的長為, (7分)
所以.                            (9分)
,得(負值舍去). (10分)
時,;當時,.     (12分)
因此,是函數(shù)的極小值點,也是最小值點.            (13分)
所以,當?shù)讓挒?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/7/1twiu2.png" style="vertical-align:middle;" />m時,所用材料最省.                       (14分)
考點:導數(shù)的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) (R).
(1)當時,求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)若時有極值,求實數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x2+2x+kln x,其中k≠0.
(1)當k>0時,判斷f(x)在(0,+∞)上的單調性;
(2)討論f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求f(x)的單調區(qū)間和極值;
(2)關于的方程f(x)=a在區(qū)間上有兩個根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是二次函數(shù),方程有兩個相等的實數(shù)根,且。
(1)求的表達式;
(2)若直線的圖象與兩坐標軸圍成的圖形面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其導函數(shù)為.
(1)若,求函數(shù)在點處的切線方程;
(2)求的單調區(qū)間;
(3)若為整數(shù),若時,恒成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),其中.
(1)當時,求的單調遞增區(qū)間;
(2)若在區(qū)間上的最小值為8,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)若函數(shù)處取得極值,對,恒成立,求實數(shù)的取值范圍;
(3)當時,求證:

查看答案和解析>>

同步練習冊答案