【題目】新課標(biāo)要求學(xué)生數(shù)學(xué)模塊學(xué)分認定由模塊成績決定,模塊成績由模塊考試成績和平時成績構(gòu)成,各占50%,若模塊成績大于或等于60分,獲得2學(xué)分,否則不能獲得學(xué)分(為0分),設(shè)計一算法,通過考試成績和平時成績計算學(xué)分,并畫出程序框圖.
【答案】解:算法:
第一步:輸入考試成績C1和平時成績C2 ,
第二步:計算模塊成績c=
第三步:判斷C與60的大小,輸出學(xué)分F
若C≥60,則輸出F=2;
若C<60,則輸出F=0.
程序框圖:(如圖)
【解析】首先根據(jù)是解題所給的條件,模塊成績大于或等于60分,獲得2學(xué)分,否則不能獲得學(xué)分,根據(jù)條件設(shè)計一個算法,判斷C與60的大小,輸出學(xué)分F,關(guān)鍵是若C≥60,則輸出F=2;若C<60,則輸出F=0,進而根據(jù)做出的算法,畫出程序框圖,注意條件的設(shè)置.
【考點精析】解答此題的關(guān)鍵在于理解算法的條件結(jié)構(gòu)的相關(guān)知識,掌握條件P是否成立而選擇執(zhí)行A框或B框.無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個判斷結(jié)構(gòu)可以有多個判斷框.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放a(1≤a≤4且a∈R)個單位的營養(yǎng)液,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)= ,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放b個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力、煤和電耗如表:
產(chǎn)品品種 | 勞動力(個) | 煤(噸) | 電(千瓦) |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)因條件限制,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問該企業(yè)如何安排生產(chǎn),才能獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點.
(1)求證:PB⊥AC.
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2>0的解集為R;命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù),當(dāng)甲、乙有且只有一個是真命題時,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是( )
A.[﹣ , ]
B.[﹣2,2]
C.[﹣1,1]
D.[﹣4,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1,M為PB中點.
(1)證明:CM∥平面PAD;
(2)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,記函數(shù) .求:
(I)函數(shù) 的最小值及取得最小值時 的集合;
(II)求函數(shù)f(x) 的單調(diào)增區(qū)間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com