如圖,正四棱柱中,設(shè),,
若棱上存在點滿足平面,求實數(shù)的取值范圍
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F(xiàn)分別是D1B,AD的中點,
(1)建立適當?shù)淖鴺讼,求出E點的坐標;
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點E,使得BC//平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC中點,作EF⊥PB交PB于F
(1)求證:PA∥平面EDB;
(2)求證:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點,求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,平面,且,點是棱的中點,點在棱上移動.
(Ⅰ)當點為的中點時,試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別在A1D,AC上,且A1E=A1D,AF=AC,則( )
A.EF至多與A1D,AC之一垂直 |
B.EF⊥A1D,EF⊥AC |
C.EF與BD1相交 |
D.EF與BD1異面 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com