【題目】世界越來越關(guān)注環(huán)境保護問題,某監(jiān)測站點2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù),數(shù)據(jù)統(tǒng)計如下

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

空氣優(yōu)

空氣良

輕度污染

中度污染

重度污染

天數(shù)

(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖

(2)由頻率分布直方圖,求該組數(shù)據(jù)的平均數(shù)與中位數(shù);

(3)在空氣質(zhì)量數(shù)分別為的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取天,從中任意選取天,求事件兩天空氣都為良發(fā)生的概率.

【答案】(1)見解析;(2)平均數(shù) ,中位數(shù).(3) .

【解析】(1) ,

.

(2)平均數(shù) ,中位數(shù).

(3) 在空氣質(zhì)量指數(shù)為的監(jiān)測天數(shù)中分別抽取天和天,在所抽収的天中,將空氣質(zhì)量指數(shù)為天分別記為;將空氣質(zhì)量指數(shù)為天記為,從中任取天的基本事件分別為: 種,其中

事件 “兩天空氣都為良”包含的基本事件為種,所以事件 “兩天都為良”發(fā)生的概率是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)當時,求函數(shù)的極值點;

(2)若函數(shù)在區(qū)間上恒有,求實數(shù)的取值范圍;

(3)已知,且,在(2)的條件下,證明數(shù)列是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).

(1)設曲線處的切線為,若與點的距離為,求的值;

(2)若對于任意實數(shù), 恒成立,試確定的取值范圍;

(3)當時,函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),拋物線的頂點為點D,對稱軸與x軸交于點E,連結(jié)BD,則拋物線表達式:BD的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x 軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連結(jié)AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)f(x)的圖像,并根據(jù)圖像寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,現(xiàn)學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣統(tǒng)計,先將800人按001,002,003,…,800進行編號.

(Ⅰ)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的3個人的編號:(下面摘取了第7行至第9行)

(Ⅱ)抽的100人的數(shù)學與地理的水平測試成績?nèi)缦卤恚?/span>

成績優(yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?0+18+4=42人,若在該樣本中,數(shù)學成績優(yōu)秀率為30%,求的值.

(Ⅲ)將, 表示成有序數(shù)對,求“地理成績?yōu)榧案竦膶W生中,數(shù)學成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少”的數(shù)對的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2ax+b , 且f(1)= 、f(2)=
(1)求a、b的值;
(2)判斷f(x)的奇偶性并證明;
(3)先判斷并證明函數(shù)f(x)在[0,+∞)上的單調(diào)性,然后求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足,則{an}的前60項和為( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

同步練習冊答案