【題目】已知數(shù)列的首項(xiàng),對(duì)任意的,都有,數(shù)列是公比不為的等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項(xiàng).
【答案】(1);(2).
【解析】
(1)根據(jù)遞推公式求出、,由題意得出,求出的值,結(jié)合數(shù)列公比不為的等比數(shù)列進(jìn)行檢驗(yàn),進(jìn)而得出實(shí)數(shù)的值;
(2)求出利用奇偶分組法求出、,設(shè),可得知,從而可知、或為偶數(shù),由結(jié)合可推出不成立,然后分和為偶數(shù)兩種情況討論,結(jié)合的取值范圍可求出符合條件的正整數(shù)的值.
(1)由,可知,,,
因?yàn)?/span>為等比數(shù)列,所以,
即,即,解得或,
當(dāng)時(shí),,所以,則,
所以數(shù)列的公比為1,不符合題意;
當(dāng)時(shí),,所以數(shù)列的公比,
所以實(shí)數(shù)的值為.
(2)由(1)知,所以
則
,
則,
因?yàn)?/span>,又,
且,,所以,則,設(shè),
則或為偶數(shù),因?yàn)?/span>不可能,所以或為偶數(shù),
①當(dāng)時(shí),,化簡得,
即,所以可取值為1,2,3,
驗(yàn)證,,得,當(dāng)時(shí),成立.
②當(dāng)為偶數(shù)時(shí),,
設(shè),則,
由①知,當(dāng)時(shí),;
當(dāng)時(shí),,所以,所以的最小值為,
所以,令,則,
即,無整數(shù)解.
綜上,正整數(shù)的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將所有平面向量組成的集合記作,是從到的對(duì)應(yīng)關(guān)系,記作或,其中、、、都是實(shí)數(shù),定義對(duì)應(yīng)關(guān)系的模為:在的條件下的最大值記作,若存在非零向量,及實(shí)數(shù)使得,則稱為的一個(gè)特殊值;
(1)若,求;
(2)如果,計(jì)算的特征值,并求相應(yīng)的;
(3)若,要使有唯一的特征值,實(shí)數(shù)、、、應(yīng)滿足什么條件?試找出一個(gè)對(duì)應(yīng)關(guān)系,同時(shí)滿足以下兩個(gè)條件:①有唯一的特征值,②,并驗(yàn)證滿足這兩個(gè)條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日我國隆重紀(jì)念了建國70周年,期間進(jìn)行了一系列大型慶;顒(dòng),極大地激發(fā)了全國人民的愛國熱情.某校高三學(xué)生也投入到了這場(chǎng)愛國活動(dòng)中,他(她)們利用周日休息時(shí)間到社區(qū)做義務(wù)宣講員,學(xué)校為了調(diào)查高三男生和女生周日的活動(dòng)時(shí)間情況,隨機(jī)抽取了高三男生和女生各40人,對(duì)他(她)們的周日活動(dòng)時(shí)間進(jìn)行了統(tǒng)計(jì),分別得到了高三男生的活動(dòng)時(shí)間(單位:小時(shí))的頻數(shù)分布表和女生的活動(dòng)時(shí)間(單位:小時(shí))的頻率分布直方圖.(活動(dòng)時(shí)間均在內(nèi))
活動(dòng)時(shí)間 | ||||||
頻數(shù) | 8 | 10 | 7 | 9 | 4 | 2 |
(1)根據(jù)調(diào)查,試判斷該校高三年級(jí)學(xué)生周日活動(dòng)時(shí)間較長的是男生還是女生?并說明理由;
(2)在被抽取的80名高三學(xué)生中,從周日活動(dòng)時(shí)間在內(nèi)的學(xué)生中抽取2人,求恰巧抽到1男1女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級(jí)有、兩個(gè)自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個(gè)教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n∈N*且n≥2,集合
(1)寫出集合中的所有元素;
(2)設(shè)(,···,),(,···,)∈,證明“=”的充要條件是=(i=1,2,3,···,n);
(3)設(shè)集合={︳(,···,)∈},求中所有正數(shù)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線上有一點(diǎn)(m>0),點(diǎn)P在軸上的射影恰好是雙曲線C的右焦點(diǎn),過點(diǎn)P作雙曲線C兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,為了控制質(zhì)量,質(zhì)量控制工程師要在產(chǎn)品出廠前對(duì)產(chǎn)品進(jìn)行檢驗(yàn).現(xiàn)有(且)份產(chǎn)品,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)次;(2)混合檢驗(yàn),將這份產(chǎn)品混合在一起作為一組來檢驗(yàn).若檢測(cè)通過,則這份產(chǎn)品全部為正品,因而這份產(chǎn)品只要檢驗(yàn)一次就夠了;若檢測(cè)不通過,為了明確這份產(chǎn)品究竟哪幾份是次品,就要對(duì)這份產(chǎn)品逐份檢驗(yàn),此時(shí)這份產(chǎn)品的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的樣本中,每份樣本的檢驗(yàn)結(jié)果是正品還是次品都是獨(dú)立的,且每份樣本是次品的概率為.
(1)如果,采用逐份檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢測(cè)結(jié)果恰有兩份次品的概率;
(2)現(xiàn)對(duì)份產(chǎn)品進(jìn)行檢驗(yàn),運(yùn)用統(tǒng)計(jì)概率相關(guān)知識(shí)回答:當(dāng)和滿足什么關(guān)系時(shí),用混合檢驗(yàn)方式進(jìn)行檢驗(yàn)可以減少檢驗(yàn)次數(shù)?
(3)①當(dāng)(且)時(shí),將這份產(chǎn)品均分為兩組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢驗(yàn)總次數(shù)的數(shù)學(xué)期望;
②當(dāng)(,且,)時(shí),將這份產(chǎn)品均分為組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),寫出檢驗(yàn)總次數(shù)的數(shù)學(xué)期望(不需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com