【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個(gè)公共點(diǎn),求C1的普通方程;

2)已知點(diǎn)A0,1),若曲線C1方程中的參數(shù)是t0απ,且C1C2相交于P,Q兩個(gè)不同點(diǎn),求的最大值.

【答案】1;(2

【解析】

1)利用公式直接把極坐標(biāo)方程化為直角坐標(biāo)方程,利用圓與圓相切,可以得到等式,求出,進(jìn)而得到結(jié)果;

2)把曲線參數(shù)方程代入曲線直角坐標(biāo)方程,得到一個(gè)一元二次方程,設(shè)交點(diǎn)對(duì)應(yīng)的參數(shù)分別是,利用一元二次方程根與系數(shù)的關(guān)系,求得的表達(dá)式,求出最大值.

1)∵ρ2cosθ,∴曲線C2的直角坐標(biāo)方程為∴(x12+y21,

α是曲線C1的參數(shù),∴C1的普通方程為x2+y12t2,

C1C2有且只有一個(gè)公共點(diǎn),∴|t|1|t|1,

C1的普通方程為x2+y12=(2x2+y12=(2

2)∵t是曲線C1的參數(shù),∴C1是過(guò)點(diǎn)A0,1)的一條直線,

設(shè)與點(diǎn)P,Q相對(duì)應(yīng)的參數(shù)分別是t1,t2,把,代入(x12+y21t2+2sinαcosαt+10,∴

|t1|+|t2||t1+t2|2|sinα|≤2,

當(dāng)α時(shí),△=4sinαcosα2440,

取最大值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形中,,,點(diǎn)在邊上,則的最大值為( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC底面BCDEBC=2,CD=,AB=AC

1)證明.

2)設(shè)側(cè)面ABC為等邊三角形,求二面角C-AD-E的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè)的極值點(diǎn).求,并求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為了了解本年度數(shù)學(xué)競(jìng)賽成績(jī)情況,從中隨機(jī)抽取了個(gè)學(xué)生的分?jǐn)?shù)作為樣本進(jìn)行統(tǒng)計(jì),按照,,的分組作出頻率分布直方圖如圖所示,已知得分在的頻數(shù)為20,且分?jǐn)?shù)在70分及以上的頻數(shù)為27.

(1)求樣本容量以及,的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>80分以上(80)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】①在同一坐標(biāo)系中,的圖象關(guān)于軸對(duì)稱

②函數(shù)是奇函數(shù)

③函數(shù)的圖象關(guān)于成中心對(duì)稱

④函數(shù)的最大值為

以上四個(gè)判斷正確有_____________.(寫(xiě)上序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接五一節(jié)的到來(lái),某單位舉行慶五一,展風(fēng)采的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤(pán)Enter鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫(huà)面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù),并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按Enter鍵,當(dāng)顯示出來(lái)的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).

1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;

2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°30°角,過(guò)點(diǎn)P(1,0)作直線AB分別交OAOBA、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線yx上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)的各景點(diǎn)從2009年取消門(mén)票實(shí)行免費(fèi)開(kāi)放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向觀光、休閑、會(huì)展三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬(wàn)人)與年份的數(shù)據(jù):

1

2

3

4

5

6

7

8

9

10

旅游人數(shù)(萬(wàn)人)

300

283

321

345

372

435

486

527

622

800

該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了的兩個(gè)回歸模型:

模型①:由最小二乘法公式求得的線性回歸方程;

模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.

1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到001).

2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬(wàn)人,精確到個(gè)位).

回歸方程

30407

14607

參考公式、參考數(shù)據(jù)及說(shuō)明:

①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.②刻畫(huà)回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,

55

449

605

83

4195

900

表中

查看答案和解析>>

同步練習(xí)冊(cè)答案