精英家教網 > 高中數學 > 題目詳情

已知函數,,設,且函數的零點均在區(qū)間內,則的最小值為____▲_____.

 

【答案】

9

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年長郡中學一模文)(13分)

由函數確定數列,,函數的反函數能確定數列,,若對于任意都有,則稱數列是數列的“自反函數列”.

(I)設函數,若由函數確定的數列的自反數列為,求;

(Ⅱ)已知正數數列的前n項和,寫出表達式,并證明你的結論;

(Ⅲ)在(I)和(Ⅱ)的條件下,,當時,設是數列的前項和,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)

(A類)已知函數的圖象恒過定點,且點又在函

的圖象.

(1)求實數的值;                (2)解不等式;

(3)有兩個不等實根時,求的取值范圍.

(B類)設是定義在上的函數,對任意,恒有

.

⑴求的值;     ⑵求證:為奇函數;

⑶若函數上的增函數,已知,求

取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年上海市黃浦區(qū)大境中學高三5月模擬數學試卷(理科)(解析版) 題型:解答題

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2008年上海市八區(qū)聯(lián)考高考數學模擬試卷(理科)(解析版) 題型:解答題

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案