【題目】如圖,四邊形是矩形,沿對角線折起,使得點在平面上的射影恰好落在邊上.

(1)求證:平面平面;

(2)當(dāng)時,求二面角的余弦值.

【答案】I見解析;II.

【解析】試題分析1)先證明. 結(jié)合,得平面,又平面

所以平面平面.

2)以點為原點,線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,用向量法求解即可.

試題解析:(1)設(shè)點在平面上的射影為點,連接

平面,所以.

因為四邊形是矩形,所以,所以平面,

所以.

,所以平面,而平面,

所以平面平面.

2)方法1:在矩形中,過點的垂線,垂足為,連結(jié).

因為平面 ,又DM∩DE=D

所以平面

所以為二面角的平面角.

設(shè),則.

易求出, .

中,

所以.

方法2:以點為原點,線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,如圖所示.

設(shè),則,所以, .

由(I)知,又,所以°,°,那么, , ,

所以,所以 .

設(shè)平面的一個法向量為,則

,則 ,所以.

因為平面的一個法向量為,

所以.

所以求二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,點EAB上,AE2EB2,且DEAB.DE為折痕把△ADE折起,使點A到達(dá)點F的位置,且∠FEB60°.

1)求證:平面BFC⊥平面BCDE;

2)若直線DF與平面BCDE所成角的正切值為,求二面角EDFC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,長郡中學(xué)高三興趣研究小組利用暑假空閑期間做了一項對人們霧霾天外出時是否戴口罩的調(diào)查,共調(diào)查了120人,其中女性70人,男性50人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:

(Ⅰ)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系;

(Ⅱ)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;

(Ⅲ)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為性別與霧霾天外出戴口罩有關(guān)系.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實也是和社會溝通的一個平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);

2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】扇形AOB中心角為,所在圓半徑為,它按如圖()()兩種方式有內(nèi)接矩形CDEF

(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè)

(2)M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點CF分別在半徑OB、OA上,設(shè);

試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在黨中央的正確指導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份新冠肺炎疫情得到了控制.下圖是國家衛(wèi)健委給出的全國疫情通報,甲、乙兩個省份從27日到213日一周的新增新冠肺炎確診人數(shù)的折線圖如下:

根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,通過比較把你得到最重要的兩個結(jié)論寫在答案紙指定的空白處.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國剩余定理又稱孫子定理1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為中國剩余定理中國剩余定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將120192019個數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項中,中間項的值為( 。

A.992B.1022C.1007D.1037

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試討論的單調(diào)性;

2)若函數(shù)在定義域上有兩個極值點,試問:是否存在實數(shù),使得?

查看答案和解析>>

同步練習(xí)冊答案