已知函數(shù) 是自然對數(shù)的底數(shù))的最小值為
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)已知,試解關(guān)于的不等式 ;
(Ⅲ)已知.若存在實(shí)數(shù),使得對任意的,都有,試求的最大值.

(1)
(2)當(dāng)時,不等式的解為;當(dāng)時,不等式的解為
(3)3

解析試題分析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1b/6/uhsrs2.png" style="vertical-align:middle;" />,所以,故,
因?yàn)楹瘮?shù)的最小值為,所以.              3分
(Ⅱ)由(Ⅰ)得,.
當(dāng)時,, 5分
故不等式可化為:,
,           6分
,
所以,當(dāng)時,不等式的解為;
當(dāng)時,不等式的解為.          8分
(Ⅲ)∵當(dāng)時,,
.
∴原命題等價(jià)轉(zhuǎn)化為:存在實(shí)數(shù),使得不等式對任意恒成立.        10分
.
,∴函數(shù)為減函數(shù).       11分
又∵,∴.          12分
∴要使得對值恒存在,只須.     13分
,
且函數(shù)為減函數(shù),
∴滿足條件的最大整數(shù)的值為3.   14分
考點(diǎn):函數(shù)與不等式
點(diǎn)評:主要是考查了函數(shù)與不等式的綜合運(yùn)用,以及導(dǎo)數(shù)研究函數(shù)單調(diào)性的求解屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為10萬元,每生產(chǎn)1千件該產(chǎn)品需另投入2.7萬元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司在這一產(chǎn)品的產(chǎn)銷過程中所獲利潤最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位設(shè)計(jì)的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識,對于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時間內(nèi),在單位面積上通過的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時間內(nèi),在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量(結(jié)果用,表示);
(2)為使雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計(jì)的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)命題:函數(shù)上為減函數(shù), 命題的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/8/mmra82.png" style="vertical-align:middle;" />,命題函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/8/mmra82.png" style="vertical-align:middle;" />
(1)若命題為真命題,求的取值范圍。
(2)若為真命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若存在,使得成立,求實(shí)數(shù)的取值范圍;
(2)解關(guān)于的不等式;
(3)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時,x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲廠以x 千克/小時的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時可獲得利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知函數(shù)y=ln(-x2+x-a)的定義域?yàn)椋ǎ?,3),求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

建造一個容積為50,高為2長方體的無蓋鐵盒,問這個鐵盒底面的長和寬各為多少時材料最?

查看答案和解析>>

同步練習(xí)冊答案