【題目】如圖,ABCD為矩形,點(diǎn)A、E、B、F共面,且和均為等腰直角三角形,且90°.
(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;
(Ⅱ)問在線段EC上是否存在一點(diǎn)G,使得BG∥平面CDF,若存在,求出此時(shí)三棱錐G-ABE與三棱錐G-ADF的體積之比.
【答案】(Ⅰ)見證明;(Ⅱ)見解析
【解析】
(Ⅰ)根據(jù)為矩形,結(jié)合面面垂直性質(zhì)定理可得平面,即,結(jié)合,即可得平面,最后根據(jù)面面垂直判定定理可得結(jié)果;(Ⅱ)首先易得平面,再證平面,進(jìn)而面面平行,延長到點(diǎn),使得,可得是平行四邊形,過點(diǎn)作的平行線,交于點(diǎn),此即為所求,通過可得結(jié)果.
(Ⅰ)∵ABCD為矩形,∴BC⊥AB,
又∵平面ABCD⊥平面AEBF,BC平面ABCD,平面ABCD∩平面AEBF=AB,
∴BC⊥平面AEBF,
又∵AF平面AEBF,∴BC⊥AF.
∵∠AFB=90°,即AF⊥BF,且BC、BF平面BCF,BC∩BF=B,
∴AF⊥平面BCF
又∵AF平面ADF,∴平面ADF平面BCF.
(2)∵BC∥AD,AD平面ADF,∴BC∥平面ADF.
∵和均為等腰直角三角形,且90°,
∴∠FAB=∠ABE=45°,∴AF∥BE,又AF平面ADF,∴BE∥平面ADF,
∵BC∩BE=B,∴平面BCE∥平面ADF.
延長EB到點(diǎn)H,使得BH =AF,又BC AD,連CH、HF,易證ABHF是平行四邊形,
∴HFABCD,∴HFDC是平行四邊形,∴CH∥DF.
過點(diǎn)B作CH的平行線,交EC于點(diǎn)G,即BG∥CH∥DF,(DF平面CDF)
∴BG∥平面CDF,即此點(diǎn)G為所求的G點(diǎn).
又BE=,∴EG=,又,
,
故..
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為,其中為底面的中心,,分別為,的中點(diǎn),平面與底面交于直線.
(1)求證:.
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓左頂點(diǎn)為M,上頂點(diǎn)為N,直線MN的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)直線l:與橢圓交于A,C兩點(diǎn),與y軸交于點(diǎn)P,以線段AC為對(duì)角線作正方形ABCD,若.
()求橢圓方程;
()若點(diǎn)E在直線MN上,且滿足,求使得最長時(shí),直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1=3,AC⊥BC,點(diǎn)M在線段AB上.
(1)若M是AB中點(diǎn),證明AC1∥平面B1CM;
(2)當(dāng)BM時(shí),求直線C1A1與平面B1MC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會(huì)驚艷亮相,冬奧會(huì)正式進(jìn)入了北京周期,全社會(huì)對(duì)冬奧會(huì)的熱情空前高漲.
(1)為迎接冬奧會(huì),某社區(qū)積極推動(dòng)冬奧會(huì)項(xiàng)目在社區(qū)青少年中的普及,并統(tǒng)計(jì)了近五年來本社區(qū)冬奧項(xiàng)目青少年愛好者的人數(shù)(單位:人)與時(shí)間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運(yùn)動(dòng)用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率同為 ,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折. v
兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購買1000元的冰雪運(yùn)動(dòng)用品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會(huì)驚艷亮相,冬奧會(huì)正式進(jìn)入了北京周期,全社會(huì)對(duì)冬奧會(huì)的熱情空前高漲.
(1)為迎接冬奧會(huì),某社區(qū)積極推動(dòng)冬奧會(huì)項(xiàng)目在社區(qū)青少年中的普及,并統(tǒng)計(jì)了近五年來本社區(qū)冬奧項(xiàng)目青少年愛好者的人數(shù)(單位:人)與時(shí)間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運(yùn)動(dòng)用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率同為 ,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折. v
兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購買1000元的冰雪運(yùn)動(dòng)用品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐中,平面.,,.點(diǎn)是與的交點(diǎn),點(diǎn)在線段上且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com