精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BEAFBCAD,AFABBC=2,AD=1.

(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;

(2)求二面角FCDA的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)推導出平面BCE平面ADF.設平面DFC平面BCE=l,則l過點C.由平面BCE平面ADF,平面DFC平面BCE=l,得到DFl,由此能證明在平面BCE上一定存在過點C的直線l,使得DFl.(2)以A為原點,AD,AB,AF分別為x軸,y軸,z軸建立空間直角坐標系,利用向量法能求出二面角FCDA的余弦值.

試題解析:

(1)證明:由已知得,BEAF,BE平面AFD,AF平面AFD,

BE平面AFD.

同理可得,BC平面AFD.

BEBCB,∴平面BCE平面AFD.

設平面DFC平面BCEl,則l過點C.

平面BCE平面ADF,平面DFC平面BCEl,平面DFC平面AFDDF,

DFl,即在平面BCE上一定存在過點C的直線l,使得DFl.

(2)∵平面ABEF平面ABCD,平面ABCD平面ABEFABFA平面ABEF

FAB=90°,∴AFAB,∴AF平面ABCD.

AD平面ABCD,∴AFAD.

∵∠DAB=90°,∴ADAB.

A為坐標原點,ADAB,AF所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,由已知得,D(1,0,0),C(2,2,0),F(0,0,2),∴=(-1,0,2),=(1,2,0).

設平面DFC的法向量為n=(xy,z),

z=1,則n=(2,-1,1),

不妨取平面ACD的一個法向量為m=(0,0,1),

∴cos〈m,n〉=

由于二面角FCDA為銳角,

因此二面角FCDA的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知離心率為的橢圓焦點在軸上,且橢圓個頂點構成的四邊形面積為,過點的直線與橢圓相交于不同的兩點.

(1)求橢圓的方程;

(2)設為橢圓上一點,且為坐標原點).求當時,實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐的底面是矩形,側面是正三角形,,.

(1)求證:平面平面;

(2)若中點,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

(1)求甲、乙兩人成績的平均數和中位數;

(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正三棱柱中,已知,分別為的中點,點上,且求證:

(1)直線平面;

(2)直線平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數a,使得=?若存在,求出實數a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,島相距海里上午9點整有一客輪在島的北偏西且距島 海里的,沿直線方向勻速開往島,在島停留分鐘后前往市.上午測得客輪位于島的北偏西且距島 海里的,此時小張從島乘坐速度為海里/小時的小艇沿直線方向前往島換乘客輪去市.

)若,問小張能否乘上這班客輪?

)現(xiàn)測得, 已知速度為海里/小時()的小艇每小時的總費用為()元,若小張由島直接乘小艇去市,則至少需要多少費用?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,ABBCAS=AB,點E,F,G分別在棱SA,SB,SC上,且平面EFG∥平面ABC,點ESA的中點.求證:

(Ⅰ)AF⊥平面SBC;

(Ⅱ)SABC

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計,某5家鮮花店今年4月的銷售額和利潤額資料如下表:

鮮花店名稱

A

B

C

D

E

銷售額x(千元)

3

5

6

7

9

利潤額y(千元)

2

3

3

4

5

1)用最小二乘法計算利潤額y關于銷售額x的回歸直線方程=x+;

2)如果某家鮮花店的銷售額為8千元時,利用(1)的結論估計這家鮮花店的利潤額是多少.

參考公式:回歸方程中斜率和截距的最小二乘法估計值公式分別為

查看答案和解析>>

同步練習冊答案