【題目】已知函數(shù).
(Ⅰ)當(dāng)時,函數(shù)在區(qū)間上的最小值為-5,求的值;
(Ⅱ)設(shè),且有兩個極值點(diǎn),.
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
【答案】(Ⅰ)8;(Ⅱ)(i);(ii)詳見解析.
【解析】
(Ⅰ)對求導(dǎo),可得,單調(diào)遞增,得到最小值,從而得到的值.
(Ⅱ)(i)有兩個極值點(diǎn),,通過參變分離轉(zhuǎn)化為有兩個不相等的實(shí)數(shù)根,再轉(zhuǎn)化成兩個函數(shù)交點(diǎn)問題,從而得到的取值范圍.
(ii)根據(jù)題意得到,,兩式相加、減消去,設(shè)構(gòu)造出關(guān)于的函數(shù),利用導(dǎo)數(shù)得到單調(diào)性,進(jìn)行證明.
解:(Ⅰ),
∵,,∴,
所以在區(qū)間上為單調(diào)遞增.
所以,
又因?yàn)?/span>,
所以的值為8.
(Ⅱ)(i)∵
,
且的定義域?yàn)?/span>,
∴.
由有兩個極值點(diǎn),,
等價于方程有兩個不同實(shí)根,.
由得:.
令,
則,由.
當(dāng)時,,則在上單調(diào)遞增;
當(dāng)時,,則在上單調(diào)遞減.
所以,當(dāng)時,取得最大值,
∵,∴當(dāng)時,,當(dāng)時,,
所以,解得,所以實(shí)數(shù)的取值范圍為.
(ii)證明:不妨設(shè),
且①,②,
①+②得: ③
②-①得: ④
③÷④得:,即,
要證:,
只需證.
即證:.
令,
設(shè),
.
∴在上單調(diào)遞增,
∴,即,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測試,某校對高三1班同學(xué)按照高考測試項(xiàng)目按百分制進(jìn)行了預(yù)備測試,并對50分以上的成績進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.
(Ⅰ)請估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:
(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計(jì) | |
不支持 | |||
支持 | |||
總計(jì) |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)、兩種零件,其質(zhì)量測試按指標(biāo)劃分,指標(biāo)大于或等于的為正品,小于的為次品.現(xiàn)隨機(jī)抽取這兩種零件各100個進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) | |||||
零件 | 8 | 12 | 40 | 30 | 10 |
零件 | 9 | 16 | 40 | 28 | 7 |
(Ⅰ)試分別估計(jì)、兩種零件為正品的概率;
(Ⅱ)生產(chǎn)1個零件,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個零件,若是正品則盈利60元,若是次品則虧損15元,在(Ⅰ)的條件下:
(i)設(shè)為生產(chǎn)1個零件和一個零件所得的總利潤,求的分布列和數(shù)學(xué)期望;
(ii)求生產(chǎn)5個零件所得利潤不少于160元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面內(nèi)共始點(diǎn)的三個非零向量,且兩兩不共線,有下列命題:
(1)關(guān)于的方程可能有兩個不同的實(shí)數(shù)解;
(2)關(guān)于的方程至少有一個實(shí)數(shù)解;
(3)關(guān)于的方程最多有一個實(shí)數(shù)解;
(4)關(guān)于的方程若有實(shí)數(shù)解,則三個向量的終點(diǎn)不可能共線;
上述命題正確的序號是__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求的方程;
(2)是否存在直線與相交于兩點(diǎn),且滿足:①與(為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對手機(jī)流量的需求越來越大.長沙某通信公司為了更好地滿足消費(fèi)者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價方案作為試點(diǎn),經(jīng)過一個月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個類似于試點(diǎn)的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且與均為正三角形, 為的重心.
(1)求證: 平面;
(2)求平面與平面所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com