設(shè)函數(shù)的定義域為(0,+∞),且對任意正實數(shù)x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1時f(x)>0.
(1)求;
(2)判斷y=f(x)在(0,+ ∞)上的單調(diào)性;
(3)一個各項均為正數(shù)的數(shù)列其中sn是數(shù)列的前n項和,求

(1)f(1)=f(1.1)=f(1)+f(1)=f(1)=0
f()=-1
(2)f(x)在(0,+∞) ↗
設(shè)
設(shè)

(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)
(Ⅰ)若的解集是,求實數(shù)的值;
(Ⅱ)若為整數(shù),,且函數(shù)上恰有一個零點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在(-1,1)上的奇函數(shù),且
(1)試求出函數(shù)的解析式;
(2)證明函數(shù)在定義域內(nèi)是單調(diào)增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)是常數(shù).
(Ⅰ) 證明曲線在點的切線經(jīng)過軸上一個定點;
(Ⅱ) 若恒成立,求的取值范圍;
(參考公式:
(Ⅲ)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
在區(qū)間上,如果函數(shù)為增函數(shù),而函數(shù)為減函數(shù),則稱函數(shù)為“弱增”函數(shù).已知函數(shù)
(1)判斷函數(shù)在區(qū)間上是否為“弱增”函數(shù)
(2)設(shè),證明
(3)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題共13分)
已知函數(shù)是定義在R的奇函數(shù),當(dāng)時,.
(1)求的表達(dá)式;
(2)討論函數(shù)在區(qū)間上的單調(diào)性;
(3)設(shè)是函數(shù)在區(qū)間上的導(dǎo)函數(shù),問是否存在實數(shù),滿足并且使在區(qū)間上的值域為,若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點
(1)求實數(shù)的值;
(2)當(dāng)時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù) 
(1)畫出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時,方程有一個解?有兩個解?有三個解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題“若函數(shù)在其定義域內(nèi)是減函數(shù),則”的逆否命題是(     )

A.若,則函數(shù)在其定義域內(nèi)不是減函數(shù)
B.若,則函數(shù)在其定義域內(nèi)不是減函數(shù)
C.若,則函數(shù)在其定義域內(nèi)是減函數(shù)
D.若,則函數(shù)在其定義域內(nèi)是減函數(shù)

查看答案和解析>>

同步練習(xí)冊答案