【題目】如圖,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中點(diǎn),則圖中直角三角形的個數(shù)是

【答案】8
【解析】解:在Rt△ABC中,∠BAC=90°,
PA⊥平面ABC,
∴AB⊥PA,PA⊥DA,PA⊥AC,
∵AB=AC,D是BC的中點(diǎn),
∴AD⊥BC,
∴BP=CP,可得PD⊥BC,
∴圖中直角三角形有△PAC,△PAB,△PAD,△ABC.△ABD,△ADC,△BPD,△DPC,8個.
所以答案是:8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),

(Ⅰ)當(dāng)直線過點(diǎn)且與圓心的距離為時,求直線的方程.

(Ⅱ)設(shè)過點(diǎn)的直線與⊙交于, 兩點(diǎn),且,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABC﹣A1B1C1的側(cè)面BCC1B1是菱形,B1C⊥A1B

(1)證明:平面AB1C⊥平面A1BC1;
(2)設(shè)D是A1C1上的點(diǎn),且A1B∥平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長為,分別是棱的中點(diǎn),過直線,的平面分別與棱、交于,,設(shè),,給出以下四個命題

平面平面

當(dāng)且僅當(dāng)時,四邊形的面積最小

四邊形周長,是單調(diào)函數(shù)

四棱錐的體積為常函數(shù);

以上命題中假命題的序號為( ).

A. ①④ B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且滿足.

(1)求角B的大小;

(2)若點(diǎn)MBC中點(diǎn),且AM=AC=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形,過平面,再過于點(diǎn),過于點(diǎn)

Ⅰ)求證:

Ⅱ)若平面于點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是(  )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算:(3﹣π)0+4sin45°﹣ +|1﹣ |.

查看答案和解析>>

同步練習(xí)冊答案