已知二次函數(shù)y=x2,現(xiàn)取x軸上的點(diǎn),分別為A1(1,0),A2(2,0),A3(3,0),…,An(n,0),…,過這些點(diǎn)分別作x軸垂線,與拋物線分別交于A′1,A′2,A′3,…,A′n…,記由線段A′nAn,AnAn+1,An+1A′n+1及拋物線弧A′n+1A′n所圍成的曲邊梯形的面積為an,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)作直線y=與A′nAn(n =1,2,3,…)交于Bn,記新的曲邊梯形A′nBnBn+1A′n+1,面積為bn,求的前n項(xiàng)和Sn
(Ⅲ)在(Ⅱ)的前提下,作直線y=x,與A′nAn(n=1,2,3,…)交于Cn,記Rt△Cn+1An+1An面積與曲邊梯形A′nBnBn+1A′n+1面積之比為Pn,求證:P1+。

解:(Ⅰ)
(Ⅱ)依題意,,

,

。
(Ⅲ)記直角三角形Cn+1An+1An面積為dn,
,
,

原式即證:,
用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),左邊=1,右邊=lna,左邊>右邊,命題成立;
②假設(shè)n=k(k≥1,k∈N*)時(shí),命題成立,
,
當(dāng)n=k+1時(shí),,
下證:

構(gòu)造函數(shù)
,∴f(x)在單調(diào)遞增,
所以當(dāng)時(shí),,∴x>ln(1+x),


故命題對(duì)n=k+1時(shí)也成立,
由①②得,對(duì)任意n∈N*都成立,故原命題成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知二次函數(shù)y=x2-2ax+3,在區(qū)間[1,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+λx在定義域N*內(nèi)單調(diào)遞增,則實(shí)數(shù)λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+bx+c圖象過點(diǎn)A(c,0),且關(guān)于直線x=2對(duì)稱,則c的值為
3或0
3或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-2x-3,在整個(gè)定義域內(nèi)其零點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+2kx+3-2k.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)k為何值時(shí),拋物線的頂點(diǎn)位置最高?
(3)求頂點(diǎn)位置最高時(shí)拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案