中國(guó)人口已經(jīng)出現(xiàn)老齡化與少子化并存的結(jié)構(gòu)特征,測(cè)算顯示中國(guó)是世界上人口老齡化速度最快的國(guó)家之一,再不實(shí)施“放開二胎”新政策,整個(gè)社會(huì)將會(huì)出現(xiàn)一系列的問題.若某地區(qū)2012年人口總數(shù)為45萬,實(shí)施“放開二胎”新政策后專家估計(jì)人口總數(shù)將發(fā)生如下變化:從2013年開始到2022年每年人口比上年增加萬人,從2023年開始到2032年每年人口為上一年的99%.
(1)求實(shí)施新政策后第年的人口總數(shù)的表達(dá)式(注:2013年為第一年);
(2)若新政策實(shí)施后的2013年到2032年人口平均值超過49萬,則需調(diào)整政策,否則繼續(xù)實(shí)施.問到2032年后是否需要調(diào)整政策?

(1);(2)到2032年不需要調(diào)整政策.

解析試題分析:(1)由題意可知,當(dāng)時(shí),數(shù)列是首項(xiàng)為,公差為的等差數(shù)列, 
當(dāng)時(shí),數(shù)列是以公比為的等比數(shù)列,又 
 
因此,新政策實(shí)施后第年的人口總數(shù)(單位:萬元)的表達(dá)式為
 
(2)設(shè)為數(shù)列的前項(xiàng)和,則從2013年到2032年共年,由等差數(shù)列及等比數(shù)列的求和公式得:
 
(說明:)新政策實(shí)施到2032年年人口均值為
,故到2032年不需要調(diào)整政策.
試題解析:(1)當(dāng)時(shí),數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,
                   2分
當(dāng)時(shí),數(shù)列是以公比為的等比數(shù)列,又 
                   4分
因此,新政策實(shí)施后第年的人口總數(shù)(單位:萬元)的表達(dá)式為
                                6分
(2)設(shè)為數(shù)列的前項(xiàng)和,則從2013年到2032年共年,由等差數(shù)列及等比數(shù)列的求和公式得:
 萬  10分
(說明:)
新政策實(shí)施到2032年年人口均值為 萬                  12分
,故到2032年不需要調(diào)整政策.                          13分 
考點(diǎn):1.等差、等比數(shù)列的通項(xiàng)公式;2.等差、等比數(shù)列的前n項(xiàng)和公式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

正項(xiàng)數(shù)列{an}滿足-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項(xiàng)的和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}是首項(xiàng)為,公比為的等比數(shù)列,設(shè)bn+15log3ant,常數(shù)t∈N*.
(1)求證:{bn}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}滿足cnanbn,是否存在正整數(shù)k,使ckck+1,ck+2按某種次序排列后成等比數(shù)列?若存在,求kt的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,
(1)判斷數(shù)列是否是等差數(shù)列,并說明理由;
(2)如果,試寫出數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列得前n項(xiàng)和為,問是否存在這樣的實(shí)數(shù),使當(dāng)且僅當(dāng)時(shí)取得最大值。若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足:
a2a3a4=28,且a3+2是a2a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bnanlogan,Snb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1,Sn)在直線3x+2y-3=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù) ,當(dāng)時(shí)取得最小值-4.
(1)求函數(shù)的解析式;
(2)若等差數(shù)列前n項(xiàng)和為,且,,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案