【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:①;②當(dāng)時(shí), ;③;④當(dāng)秒時(shí), ;⑤當(dāng)的面積為時(shí),時(shí)間的值是;其中正確的結(jié)論是( )

A. ①⑤ B. ②⑤ C. ②③ D. ②④

【答案】D

【解析】根據(jù)圖(2)可得,

當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,

∵點(diǎn)PQ的運(yùn)動(dòng)的速度分別是1cm/秒、2cm/

BC=BE=10,

AD=BC=10.

又∵從MN的變化是4,

ED=4,

AE=ADED=104=6.

ADBC

∴∠EBQ=∠AEB,

故③錯(cuò)誤;

如圖1,過(guò)點(diǎn)PPFBC于點(diǎn)F

ADBC,

∴∠EBQ=∠AEB

,

PF=PBsinEBQ= t,

∴當(dāng)0<t5時(shí), ,

故①正確,

如圖3,當(dāng)t=6秒時(shí),點(diǎn)PBE上,點(diǎn)Q靜止于點(diǎn)C處。

在△ABE與△PQB中,

AE=BP,∠EBQ=∠AEB,BE=BC

∴△ABE≌△PQB(SAS).

故②正確;

如圖4,

當(dāng)時(shí),點(diǎn)PCD上,

,

,

∵∠A=∠Q=90°,

∴△ABE∽△QBP

故④正確。

由②知, ,

當(dāng)y=4時(shí),

從而,

故⑤錯(cuò)誤.

本題選擇D選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求的值;

)已知,求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實(shí)數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁場(chǎng)有一邊長(zhǎng)為20m的正三角形湖面ABC(如圖所示),計(jì)劃筑一條筆直的堤壩DE將水面分成面積相等的兩部分,以便進(jìn)行兩類水產(chǎn)品養(yǎng)殖試驗(yàn)(DAB上,EAC上).

(1)為了節(jié)約開(kāi)支,堤壩應(yīng)盡可能短,請(qǐng)問(wèn)該如何設(shè)計(jì)?堤壩最短為多少?

(2)將DE設(shè)計(jì)為景觀路線,堤壩應(yīng)盡可能長(zhǎng),請(qǐng)問(wèn)又該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=,b=,且x∈.

(1)求a·b及|a+b|;

(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.

(1)證明:a>0;

(2)若z=a+2b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件元,售價(jià)為每件元,每個(gè)月可賣出件;如果每件商品在該售價(jià)的基礎(chǔ)上每上漲元,則每個(gè)月少賣件(每件售價(jià)不能高于元).設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤(rùn)為元.

(1)求的函數(shù)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)作拋物線的兩條切線, 切點(diǎn)分別為, .

(1) 證明: 為定值;

(2) 記△的外接圓的圓心為點(diǎn), 點(diǎn)是拋物線的焦點(diǎn), 對(duì)任意實(shí)數(shù), 試判斷以為直徑的圓是否恒過(guò)點(diǎn)? 并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案