【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過(guò)橢圓右焦點(diǎn)作兩條互相垂直的弦與.當(dāng)直線(xiàn)斜率為0時(shí),.
(1)求橢圓的方程;
(2)求的取值范圍.
【答案】(1),(2).
【解析】
試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,只需兩個(gè)獨(dú)立條件. 一個(gè)是,另一個(gè)是點(diǎn)在橢圓上即,所以.所以橢圓的方程為.(2)研究直線(xiàn)與橢圓位置關(guān)系,關(guān)鍵確定參數(shù),一般取直線(xiàn)的斜率,① 當(dāng)兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,由題意知,② 當(dāng)兩弦斜率均存在且不為0時(shí),設(shè)直線(xiàn)的方程為,將直線(xiàn)的方程代入橢圓方程中,并整理得,所以.同理,.所以,利用不等式或函數(shù)單調(diào)性可得的取值范圍是綜合①與②可知,的取值范圍是.
【解】(1)由題意知,,,
所以. 2分
因?yàn)辄c(diǎn)在橢圓上,即,
所以.
所以橢圓的方程為. 6分
(2)① 當(dāng)兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,
由題意知; 7分
② 當(dāng)兩弦斜率均存在且不為0時(shí),設(shè),,
且設(shè)直線(xiàn)的方程為,
則直線(xiàn)的方程為.
將直線(xiàn)的方程代入橢圓方程中,并整理得,
所以,,
所以. 10分
同理,.
所以, 12分
令,則,,,
設(shè),
因?yàn)?/span>,所以,
所以,
所以.
綜合①與②可知,的取值范圍是. 16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估.將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評(píng)估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示.
評(píng)估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評(píng)定等級(jí) | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);
(2)從評(píng)估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營(yíng)銷(xiāo)經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有數(shù)列1,2,2,3,3,3,4,4,4,4,….
(1)問(wèn)10是該數(shù)列的第幾項(xiàng)到第幾項(xiàng)?
(2)求第100項(xiàng).
(3)求前100項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C上的動(dòng)點(diǎn)P()滿(mǎn)足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線(xiàn)C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線(xiàn)與曲線(xiàn)C交于兩點(diǎn)M、N,若|MN|=4,求直線(xiàn)的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C上的動(dòng)點(diǎn)P()滿(mǎn)足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線(xiàn)C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線(xiàn)與曲線(xiàn)C交于兩點(diǎn)M、N,若|MN|=4,求直線(xiàn)的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=x2-2x及直線(xiàn)x=0,x=a,y=0圍成的平面圖形的面積為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂(lè)園,該游樂(lè)區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂(lè)區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂(lè)區(qū),AB、BC,CD,DE,EA,BE為游樂(lè)園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(1)求道路BE的長(zhǎng)度;
(2)求道路AB,AE長(zhǎng)度之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e 的解集是( )
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com