若數(shù)列{an}對(duì)于任意的正整數(shù)n滿足:an>0且anan+1=n+1,則稱數(shù)列{an}為“積增數(shù)列”.已知“積增數(shù)列”{an}中,a1=1,數(shù)列{an2+an+12}的前n項(xiàng)和為Sn,則對(duì)于任意的正整數(shù)n,有( )
A.Sn≤2n2+3
B.Sn≥n2+4n
C.Sn≤n2+4n
D.Sn≥n2+3n
【答案】
分析:利用基本不等式判斷出a
n2+a
n+12≥2a
na
n+1,利用等差數(shù)列的前n項(xiàng)和求出數(shù)列{a
na
n+1}的前n項(xiàng)和;據(jù)項(xiàng)大和就大,判斷出數(shù)列{a
n2+a
n+12}的前n項(xiàng)和的范圍.
解答:解:∵a
n>0
∴a
n2+a
n+12≥2a
na
n+1∵a
na
n+1=n+1
∴{a
na
n+1}的前n項(xiàng)和為2+3+4+…+n+1=
∴數(shù)列{a
n2+a
n+12}的前n項(xiàng)和為
故選D
點(diǎn)評(píng):利用基本不等式的性質(zhì)時(shí),一定要注意使用的條件:兩個(gè)變量必須是正的.