【題目】已知長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD為正方形,AB=4,AA1=2,點(diǎn)E1在棱C1D1上,且D1E1=3。

(I)在棱CD上確定一點(diǎn)E,使得直線EE1∥平面D1DB,并寫(xiě)出證明過(guò)程;

(II)求證:平面A1ACC1⊥平面D1DB;

(III)若動(dòng)點(diǎn)F在正方形ABCD內(nèi),且AF=2,請(qǐng)說(shuō)明點(diǎn)F的軌跡,試求E1F長(zhǎng)度的最小值。

【答案】(1)DE=3,見(jiàn)解析(2)見(jiàn)解析(3)

【解析】

試題(1)在DC上取點(diǎn)E,使DE=3,根據(jù)平幾知識(shí)可得DEE1D1為平行四邊形,即得EE1DD1.再根據(jù)線面平行判定定理得結(jié)論,(2)先根據(jù)長(zhǎng)方體性質(zhì)得AA1DB.再結(jié)合正方形性質(zhì)得ACDB,根據(jù)線面垂直判定定理得DB⊥平面A1ACC1.,最后根據(jù)面面垂直判定定理得結(jié)論,(3)由圓的定義可得點(diǎn)F的軌跡,注意軌跡范圍,根據(jù)勾股定理得E1F取最小值時(shí)EF取最小值.再根據(jù)圓的性質(zhì)求最值.

試題解析:證明:(I)在DC上取點(diǎn)E,使DE=3,此時(shí)直線EE1∥平面D1DB.

證明如下:在長(zhǎng)方體ABCD-A1B1C1D1中,DED1E1,且DE=D1E1,

所以四邊形DEE1D1為平行四邊形.

所以EE1DD1.

DD1平面D1DB,EE1平面D1DB,

所以直線EE1∥平面D1DB.

Ⅱ)在正方形ABCD中,ACDB,

AA1⊥底面ABCD,DB底面ABCD,

所以AA1DB.

AA1AC=A,

所以DB⊥平面A1ACC1.

DB平面D1DB,

所以平面A1ACC1⊥平面D1DB.

(III)因?yàn)閯?dòng)點(diǎn)F在正方形內(nèi),且AF=2,

所以點(diǎn)F的軌跡為以A為圓心,2為半徑,在正方形ABCD內(nèi)的個(gè)圓周。

由題意知,直線EE1⊥平面ABCD,所以EE1EF,故E1F取最小值,即EF取最小值.

所以當(dāng)A,F(xiàn),E三點(diǎn)共線時(shí),EF長(zhǎng)度最小,即E1F長(zhǎng)度最小,

此時(shí)AE=

E1F=.

所以E1F的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校某文具商店經(jīng)營(yíng)某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價(jià)處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時(shí)每件文具僅獲利2元.為了了解市場(chǎng)需求的情況,經(jīng)銷商統(tǒng)計(jì)了去年一年(52周)的銷售情況.

銷售量(件)

10

11

12

13

14

15

16

周數(shù)

2

4

8

13

13

8

4

以去年每周的銷售量的頻率為今年每周市場(chǎng)需求量的概率.
(1)要使進(jìn)貨量不超過(guò)市場(chǎng)需求量的概率大于0.5,問(wèn)進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫(xiě)出周利潤(rùn)Y的分布列;
(3)如果以周利潤(rùn)的期望值為考慮問(wèn)題的依據(jù),今年的周進(jìn)貨量定為多少合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲C的極坐標(biāo)方程ρ=2sinθ,設(shè)直線L的參數(shù)方程 ,(t為參數(shù))設(shè)直線L與x軸的交點(diǎn)M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)邊所在直線上.

)求邊所在直線的方程;

)求矩形外接圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,Tn為{bn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(x+1)恰有三個(gè)零點(diǎn),則a的取值范圍是(
A.(0,
B.(0,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案