【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程關(guān)于時間的函數(shù)關(guān)系式分別為,,,有以下結(jié)論

,甲走在最前面;

乙走在最前面;

,丁走在最前面,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它們一直運動下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號為 (把正確結(jié)論的序號都填上,多填或少填均不得分)

【答案】③④⑤

【解析】

試題分析:路程關(guān)于時間的函數(shù)關(guān)系式分別為,,,,它們相應(yīng)的函數(shù)模型分別是指數(shù)函數(shù),冪函數(shù),一次函數(shù)和對數(shù)函數(shù)模型;時,,所以結(jié)論不正確;因為指數(shù)型的增長速度對于冪函數(shù)的增長速度,所以時,甲總會超過乙的,所以結(jié)論不正確;根據(jù)四種函數(shù)的變化特點,對數(shù)型函數(shù)的變化是先快后慢,當時甲乙丙丁四個物體重合,從而可知當時,丁走在最前面,當時,丁走在最后面,所以該結(jié)論正確;結(jié)合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,所以該結(jié)論正確;指數(shù)函數(shù)變化是先慢后快,當運動的時間足夠長,最前面的動物一定是按照指數(shù)型函數(shù)運動的物體,即一定是甲物體,所以該結(jié)論正確,所以正確的是③④⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題等腰三角形的底角必是銳角”,下列假設(shè)正確的是( )

A. 等腰三角形的頂角不是銳角 B. 等腰三角形的底角為直角

C. 等腰三角形的底角為鈍角 D. 等腰三角形的底角為直角或鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】算法的計算規(guī)則以及相應(yīng)的計算步驟必須是唯一確定的,既不能含糊其辭,也不能有多種可能.這里指的是算法的

A. 有序性 B. 明確性

C. 可行性 D. 不確定性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結(jié)果如下:

服用A藥的20位患者日平均增加的睡眠時間:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B藥的20位患者日平均增加的睡眠時間:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?

(2)根據(jù)兩組數(shù)據(jù)繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的離心率為,左頂點

求橢圓的標準方程;

設(shè)直線與橢圓交于不同兩點,且滿足求證:直線恒過定點,并求出定點的坐標;

的條件下,過,垂足為,求的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

(1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為

S=0

i=1

DO

INPUT x

S=S+x

i=i+1

LOOP UNTIL __________

a=S/20

PRINT a

END

A. i>50 B. i<50 C. i>=50 D. i<=50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于在區(qū)間上有意義的兩個函數(shù),如果對任意的,均有,則稱上是接近的,否則稱上是非接近的.現(xiàn)在有兩個函數(shù),現(xiàn)給定區(qū)間.

1)若,判斷是否在給定區(qū)間上接近;

2)是否存在,使得在給定區(qū)間上是接近的;若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形ABCD是矩形,平面ABCD平面ABE,已知AB2,AEBE,且當規(guī)定主視圖方向垂直平面ABCD時,該幾何體的側(cè)視圖的面積為M、N分別是線段DE、CE上的動點,則AMMNNB的最小值為________

查看答案和解析>>

同步練習(xí)冊答案