已知橢圓的焦點在軸上,長軸長為,離心率為.
(1)求橢圓的標準方程;
(2)已知點和直線:,線段是橢圓的一條弦且直線垂直平
分弦,求實數(shù)的值.
科目:高中數(shù)學 來源:2013-2014學年上海市高三八校聯(lián)合調研考試理科數(shù)學試卷(解析版) 題型:填空題
已知橢圓的焦點在軸上,一個頂點為,其右焦點到直線的距離為,則橢圓的方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆浙江舟山二中等三校高二上學期期末聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題
已知橢圓的焦點在軸上,離心率為,則的值為( )
A. B. C. D.或
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年黑龍江省齊齊哈爾市高三二模文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的焦點在軸上,離心率,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點,求證:直線與的傾斜角互補.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年福建師大附中高二第一學期期末數(shù)學理卷 題型:解答題
(本小題13分)
已知橢圓的焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率,過橢圓的右焦點作不與坐標軸垂直的直線,交橢圓于A、B兩點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點M(m,0)是線段OF上的一個動點,且,求取值范圍;
(Ⅲ)設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N 三點共線?若存在,求出定點N的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:黑龍江省2009-2010學年度上學期高三期末(數(shù)學理)試題 題型:解答題
已知橢圓的焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率,過橢圓的右焦點作與坐標軸不垂直的直線交橢圓于兩點.
(1)求橢圓方程;
(2)設點是線段上的一個動點,且,求的取值范圍;
(3)設點是點關于軸對稱點,在軸上是否存在一個定點,使得三點共線?若存在,求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com