【題目】已知函數(shù)f(x)= x3+2x2+3x(x∈R)的圖象為曲線C,問:是否存在一條直線與曲線C同時(shí)切于兩點(diǎn)?若存在,求出符合條件的所在直線方程;若不存在,請說明理由.

【答案】解:設(shè)存在過點(diǎn)A(x1 , y1)的切線曲線C同時(shí)切于兩點(diǎn), 另一切點(diǎn)為B(x2 , y2),x1≠x2
則切線方程是:y﹣( x13+2x12+3x1)=(x12+4x1+3)(x﹣x1),
化簡得:y=(x12+4x1+3)x+(﹣ x13﹣2x12),
而過B(x2 , y2)的切線方程是y=(x22+4x2+3)x+(﹣ x23﹣2x22),
由于兩切線是同一直線,
則有:x12+4x1+3=x22+4x2+3,得x1+x2=﹣4,
又由﹣ x13﹣2x12=﹣ x23﹣2x22
即﹣ (x1﹣x2)(x12+x1x2+x22)=2(x1﹣x2)(x1+x2
化簡可得x1x2=4,
解得x2=﹣2,x1=﹣2,這與x1≠x2矛盾.
所以不存在一條直線與曲線C同時(shí)切于兩點(diǎn)
【解析】設(shè)存在過點(diǎn)A(x1 , y1)的切線曲線C同時(shí)切于兩點(diǎn),另一切點(diǎn)為B(x2 , y2),x1≠x2 , 分別求出切線,由于兩切線是同一直線,建立等式關(guān)系,根據(jù)方程的解的情況即可判斷符合條件的所有直線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD-A1B1C1D1中,求證:

1AB∥平面A1B1C;

2)平面ABB1A1⊥平面A1BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y-5=0x-2y=0的交點(diǎn)P

1)若直線l平行于直線l14x-y+1=0,求l的方程;

2)若直線l垂直于直線l14x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè)xR,用[x]表示不超過x的最大整數(shù),則y=[x]稱為高斯函數(shù),例如:[-3.5]=-4,[2.1]=2,已知函數(shù),則關(guān)于函數(shù)gx)=[fx)]的敘述正確的是(  )

A. 是偶函數(shù)B. 是奇函數(shù)

C. 的值域是0,D. 的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)的交點(diǎn),點(diǎn)在線段上,且.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有8名馬拉松比賽志愿者,其中志愿者,,通曉日語,,通曉俄語,,通曉英語,從中選出通曉日語、俄語和英語的志愿者各1名,組成一個(gè)小組.

列出基本事件;

被選中的概率;

不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2017年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進(jìn)行技術(shù)改造,預(yù)測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進(jìn)行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).

(1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為萬元(須扣除技術(shù)改造資金),求,的表達(dá)式;

(2)依上述預(yù)測,從2018年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)利潤超過不進(jìn)行技術(shù)改造的累計(jì)純利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺(tái)機(jī)器的同時(shí)購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

同步練習(xí)冊答案