(2013•江西)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線DP交x軸于點(diǎn)N直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m,證明2m-k為定值.
分析:(1)由題目給出的離心率及a+b=3,結(jié)合條件a2=b2+c2列式求出a,b,則橢圓方程可求;
(2)設(shè)出直線方程,和橢圓方程聯(lián)立后解出P點(diǎn)坐標(biāo),兩直線方程聯(lián)立解出M點(diǎn)坐標(biāo),由D,P,N三點(diǎn)共線解出N點(diǎn)坐標(biāo),
由兩點(diǎn)求斜率得到MN的斜率m,代入2m-k化簡(jiǎn)整理即可得到2m-k為定值.
解答:(1)解:因?yàn)?span id="bt3ywhg" class="MathJye">e=
c
a
=
3
2
,所以
c2
a2
=
a2-b2
a2
=
3
4
,即a2=4b2,a=2b.
又a+b=3,得a=2,b=1.
所以橢圓C的方程為
x2
4
+y2=1
;
(2)證明:因?yàn)锽(2,0),P不為橢圓頂點(diǎn),則可設(shè)直線BP的方程為y=k(x-2) (k≠0,k≠±
1
2
)

聯(lián)立
y=k(x-2)
x2
4
+y2=1
,得(4k2+1)x2-16k2x+16k2-4=0.
所以xP+2=
16k2
4k2+1
,xP=
8k2-2
4k2+1

yP=k(
8k2-2
4k2+1
-2)=
-4k
4k2+1

所以P(
8k2-2
4k2+1
,
-4k
4k2+1
).
又直線AD的方程為y=
1
2
x+1

聯(lián)立
y=k(x-2)
y=
1
2
x+1
,解得M(
4k+2
2k-1
,
4k
2k-1
).
由三點(diǎn)D(0,1),P(
8k2-2
4k2+1
,
-4k
4k2+1
),N(x,0)共線,
-4k
4k2+1
-1
8k2-2
4k2+1
-0
=
0-1
x-0
,所以N(
4k-2
2k+1
,0
).
所以MN的斜率為m=
4k
2k-1
-0
4k+2
2k-1
-
4k-2
2k+1
=
4k(2k+1)
2(2k+1)2-2(2k-1)2
=
2k+1
4

2m-k=
2k+1
2
-k=
1
2

所以2m-k為定值
1
2
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了直線與圓錐曲線的關(guān)系,訓(xùn)練了二次方程中根與系數(shù)關(guān)系,考查了由兩點(diǎn)求斜率的公式,是中高檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江西)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過(guò)點(diǎn)P (1,
3
2
),離心率e=
1
2
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦(不經(jīng)過(guò)點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問(wèn):是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳一模)已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,它的一個(gè)頂點(diǎn)恰好是拋物線y=
3
12
x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過(guò)點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•山東)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別是F1,F(xiàn)2,離心率為
3
2
,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明
1
kk1
+
1
kk2
為定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案