【題目】設(shè)向量 , , 滿足| |=2,| + |=6,| |=| |,且 ⊥ ,則| ﹣ |的取值范圍為( )
A.[4,8]
B.[4 ,8 ]
C.(4,8)
D.(4 ,8 )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個零點(diǎn),則實(shí)數(shù)m的值為( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)求S1 , S2 , S3 , S4并猜想Sn的表達(dá)式(不必寫出證明過程);
(2)設(shè)bn= ,n∈N*,求bn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,線段AB的中點(diǎn)為D.
(1)求證:平面VCD⊥平面ABC;
(2)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點(diǎn)C為圓心,D2+E2﹣4F>0)外,由點(diǎn)H向圓C引切線,其中一個切點(diǎn)為M.
求證:|HM|= ;
(1)已知點(diǎn)H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點(diǎn)C為圓心,D2+E2﹣4F>0)外,由點(diǎn)H向圓C引切線,其中一個切點(diǎn)為M.
求證:|HM|= ;
(2)如圖,P是直線x=4上一動點(diǎn),以P為圓心的圓P經(jīng)定點(diǎn)B(1,0),直線l是圓P在點(diǎn)B處的切線,過A(﹣1,0)作圓P的兩條切線分別與l交于E,F(xiàn)兩點(diǎn).
求證:|EA|+|EB|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n2+5n.
(1)求證:數(shù)列{3 }為等比數(shù)列;
(2)設(shè)bn=2Sn﹣3n,求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,an=2n , bn=50﹣3n,cn= .
(1)求c4與c8的等差中項(xiàng);
(2)當(dāng)n>5時,設(shè)數(shù)列{Sn}的前n項(xiàng)和為Tn .
(。┣骉n;
(ⅱ)當(dāng)n>5時,判斷數(shù)列{Tn﹣34ln}的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},則函數(shù)f(x)在R上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com