【題目】如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD, PAAD2E,F分別為PA,AB的中點,且DFCE.

(1)求AB的長;

(2)求直線CF與平面DEF所成角的正弦值.

【答案】1AB=;(2

【解析】

1)建立合適空間直角坐標系,設(shè)出點坐標,根據(jù)求解的值;

2)求出平面的法向量,根據(jù)計算線面角的正弦值.

解:(1)以A為原點,AB,AD,APxy,z軸建立空間直角坐標系

P(0,0,2),D(0,2,0),設(shè)B(2a0,0),則C(2a,20),E(0,0,1),F(A,0,0).

,

DFCE

,AB=

(2)由(1)知,,

設(shè)平面DEF的法向量

解得

設(shè)直線CF與平面DEF所成角為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅”的號召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):

經(jīng)計算: , , , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預(yù)測溫度為時該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)

1)應(yīng)抽查男生與女生各多少人?

2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.

男生

女生

總計

每周平均課外閱讀時間不超過2小時

每周平均課外閱讀時間超過2小時

總計

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當時,若函數(shù)的兩個極值點分別為、,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,側(cè)面底面,的中點,,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)圖像在處的切線方程;

2)證明:;

3)若不等式對于任意的均成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的值域為,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點是邊上一點,且,點的中點,將沿著折起,使點運動到點處,且滿足.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊答案