【題目】為支援武漢抗擊新冠肺炎疫情,軍隊抽組1400名醫(yī)護人員于23日起承擔(dān)武漢火神山專科醫(yī)院醫(yī)療救治任務(wù).此外,從解放軍疾病預(yù)防控制中心、軍事科學(xué)院軍事醫(yī)學(xué)研究院抽取15名專家組成聯(lián)合專家組,指導(dǎo)醫(yī)院疫情防控工作.該醫(yī)院開設(shè)了重癥監(jiān)護病區(qū)(),重癥病區(qū)(),普通病區(qū)()三個病區(qū).現(xiàn)在將甲乙丙丁4名專家分配到這三個病區(qū)了解情況,要求每個專家去一個病區(qū),每個病區(qū)都有專家,一個病區(qū)可以有多個專家.已知甲不能去重癥監(jiān)護病區(qū)(),乙不能去重癥病區(qū)(),則一共有__________種分配方式

【答案】17

【解析】

根據(jù)甲、乙兩人是否在一起分成兩種情況,分別計算出分配的方法數(shù),然后根據(jù)分類加法計數(shù)原理求得所有的分配方法數(shù).

按照甲乙是否在一起分為兩種情況:①甲乙在一起,則都在病區(qū),則丙丁分配在病區(qū),有兩種.②甲乙不在一起,若甲在種,若甲在,則乙在,有種,共計17種.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計自己的家園.英國數(shù)學(xué)家麥克勞林通過計算得到∠BCD′=109°2816'.已知一個房中BB'5,AB2,tan54°4408',則此蜂房的表面積是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,為四邊形對角線交點,為棱的中點,且平面.

1)證明:平面;

2)證明:四邊形為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了實施科技下鄉(xiāng),精準(zhǔn)脫貧戰(zhàn)略,某縣科技特派員帶著,三個農(nóng)業(yè)扶貧項目進駐某村,對該村僅有的甲、乙、丙、丁四個貧困戶進行產(chǎn)業(yè)幫扶.經(jīng)過前期實際調(diào)研得知,這四個貧困戶選擇,,三個扶貧項目的意向如下表:

扶貧項目

貧困戶

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每個貧困戶只能從自己已登記的選擇意向項目中隨機選取一項,且每個項目至多有兩個貧困戶選擇,則不同的選法種數(shù)有(

A.24B.16C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,.

1)求證:;

2)若,,的中點,求平面將三棱錐分成的兩部分幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線.

1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線上有一動點,曲線上有一動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進同學(xué)們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是(  )

A. 回答該問卷的總?cè)藬?shù)不可能是100

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團委會宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1,2,3,……,99個數(shù)全部填入如圖所示的3×3方格內(nèi),每個格內(nèi)填一個數(shù),則使得每行中的數(shù)從左至右遞增,每列中的數(shù)從上至下遞減的不同填法共有( )種

A.12B.24C.42D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若,,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點(不與,重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案