已知橢圓的離心率為,雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(  )

A.B.C.D.

D

解析試題分析:根據(jù)題意,由于橢圓的離心率為,則可知b:a=1:2,雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,可知為正方形邊長為4,則可知(2,2)在橢圓上,可知橢圓的方程為,選D.
考點:橢圓和雙曲線
點評:主要是考查了橢圓與雙曲線的性質的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

過雙曲線的右焦點作與軸垂直的直線,分別與雙曲線及其漸近線交于點(均在第一象限內),若,則雙曲線的離心率為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓長軸長、短軸長和焦距成等差數(shù)列,則該橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 設∠DAB=, ∈(0, ), 以A, B為焦點且過點D的雙曲線的離心率為e1, 以C, D為焦點且過點A的橢圓的離心率為e2, 設
的大致圖像是 (    )
  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

離心率為的橢圓與離心率為的雙曲線有相同的焦點,且橢圓長軸的端點、短軸的端點、焦點到雙曲線的一條漸近線的距離依次構成等比數(shù)列,則 (  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

動點到兩定點,連線的斜率的乘積為),則動點P在以下哪些曲線上(    )(寫出所有可能的序號)
① 直線   ② 橢圓   ③ 雙曲線  ④ 拋物線      ⑤ 圓

A.①⑤ B.③④⑤ C.①②③⑤ D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的兩條漸近線均與相切,則該雙曲線離心率等于(   )           

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點且與拋物線只有一個公共點的直線有( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

雙曲線的漸近線為(   )

A.B.C.D.

查看答案和解析>>

同步練習冊答案