【題目】已知方程k在(0,+∞)上有兩個(gè)不同的解αβ(αβ),則下列的四個(gè)命題正確的是( )

A. sin 2α=2αcos2α B. cos 2α=2αsin2α

C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β

【答案】C

【解析】依題意y=|cos x|y=kx的圖象在(0,+∞)上有兩個(gè)不同的交點(diǎn),如圖,設(shè)直線y=kxy=-cos x的切點(diǎn)B(β,-cos β),與y=cos x的一個(gè)交點(diǎn)為A(α,cos α),又y′=(-cos x)′=sin x,依題意y′|x=β=sin β,

∴k=sin β,又-cos β=kβ,∴cos β=-βsin β,∴2sin βcos β=-2βsin2β,

sin 2β=-2βsin2β.C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exsinx,其中x∈R,e=2.71828…為自然對數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng) 時(shí),f(x)≥kx,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax3+bx2+cx的極小值為﹣8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn) ,如圖所示,
(1)求f(x)的解析式;
(2)若對x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范圍;
(Ⅱ)若A∩B=,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 p: 方程 上有且僅有一解;命題 q :只有一個(gè)實(shí)數(shù)x滿足不等式 .若命題“ p 或q ”是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,排放時(shí)污染物的含量不得超過1%.已知在過濾過程中廢氣中的污染物數(shù)量P(單位:毫克/升)與過濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:P=P0ekt , (k,P0均為正的常數(shù)).若在前5個(gè)小時(shí)的過濾過程中污染物被排除了90%.那么,至少還需( )時(shí)間過濾才可以排放.
A. 小時(shí)
B. 小時(shí)
C.5小時(shí)
D.10小時(shí)

查看答案和解析>>

同步練習(xí)冊答案