【題目】關(guān)于函數(shù)圖象的對稱性與周期性,有下列說法:若函數(shù)yf(x)滿足f(x1)f(3x),則f(x)的一個周期為T2;若函數(shù)yf(x)滿足f(x1)f(3x),則f(x)的圖象關(guān)于直線x2對稱;函數(shù)yf(x1)與函數(shù)yf(3x)的圖象關(guān)于直線x2對稱;若函數(shù)與函數(shù)f(x)的圖象關(guān)于原點對稱,則,其中正確的個數(shù)是()

A. 1 B. 2

C. 3 D. 4

【答案】C

【解析】中,以代換,得,所以①正確;

設(shè)上的兩點,且,有,由,得,即關(guān)于直線對稱,所以②正確;

函數(shù)的圖象由的圖象向左平移1個單位得到,而的圖象由的圖象關(guān)于軸對稱得,再向右平移3個單位得到,即,于是與函數(shù)的圖象關(guān)于直線對稱,所以③錯誤;

設(shè)是函數(shù)圖象上的任意一點,點關(guān)于原點的對稱點必在的圖象上,有,即,即,所以④正確;故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E ,其焦點為F1,F2,離心率為,直線lx2y20x軸,y軸分別交于點A,B

(1)若點A是橢圓E的一個頂點,求橢圓的方程;

(2)若線段AB上存在點P滿足|PF1||PF2|2a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標(biāo)和定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張A4紙的長寬之比為, 分別為, 的中點.現(xiàn)分別將,沿, 折起,且, 在平面同側(cè),下列命題正確的是__________(寫出所有正確命題的序號)

, , , 四點共面;

當(dāng)平面平面, 平面

當(dāng), 重合于點時,平面平面;

當(dāng), 重合于點時,設(shè)平面平面 ,則平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,討論函數(shù)圖像的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左、右焦點為F1F2,設(shè)點F1,F2與橢圓短軸的一個端點構(gòu)成斜邊長為4的直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)A,B,P為橢圓C上三點,滿足,記線段AB中點Q的軌跡為E,若直線lyx1與軌跡E交于MN兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)(x∈D),若x∈D時,均有f′(x)<f(x)成立,則稱函數(shù)f(x)是J函數(shù).

(Ⅰ)當(dāng)函數(shù)f(x)=x2+m(ex+x),x≥e是J函數(shù)時,求實數(shù)m的取值范圍;

(Ⅱ)若函數(shù)g(x)為R上的J函數(shù),試比較g(a)與ea-1g(1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記

求數(shù)列的通項公式;

(Ⅱ)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

同步練習(xí)冊答案