已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標準方程;
(2)若拋物線與直線交于、兩點,求證:.

(1);(2)

解析試題分析:(1)由題意可知,拋物線的開口向右,所以可設拋物線的標準方程為:,因為拋物線過點,從而求出方程;(2)設出兩點坐標,聯(lián)立直線和拋物線的方程,化簡整理為一元二次方程,根據(jù)韋達定理寫出兩根之和與兩根之積,由斜率公式寫出,利用兩根和與兩根之積求出其乘積.
試題解析:(1)設拋物線的標準方程為:,因為拋物線過點,所以,
解得,所以拋物線的標準方程為:
(2)設、兩點的坐標分別為,由題意知:
 消去得: ,根據(jù)韋達定理知:,
所以,

考點:本題主要考查了拋物線的標準方程,以及直線與拋物線的位置關(guān)系,考查了方程的思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(13分) 已知橢圓C的中心在原點,離心率等于,它的一個短軸端點點恰好是拋物線 的焦點。

(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側(cè)的動點,
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足,試問直線AB的斜率是否為定值,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線上有一點,到焦點的距離為.
(Ⅰ)求的值.
(Ⅱ)如圖,設直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當面積最大時,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

矩形的中心在坐標原點,邊軸平行,=8,=6.分別是矩形四條邊的中點,是線段的四等分點,是線段的四等分點.設直線,,的交點依次為.

(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段等分點從左向右依次為,線段等分點從上向下依次為,那么直線與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,過點作圓的切線交橢圓于A,B兩點。
(1)求橢圓的焦點坐標和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.

查看答案和解析>>

同步練習冊答案