【題目】如圖,四棱錐中,底面為矩形,平面,的中點(diǎn).

1)證明:∥平面.

2)設(shè)二面角,,,求三棱錐的體積.

【答案】1)見解析(2

【解析】

(1)連結(jié)于點(diǎn),連結(jié). 根據(jù)四邊形為矩形,所以的中點(diǎn),的中點(diǎn),利用三角形的中位線可得,再利用線面平行的判定定理證明.

(2) 根據(jù)平面,四邊形為矩形,建立空間直角坐標(biāo)系.設(shè),再求得平面DAE, 平面CAE的法向量,根據(jù)二面角,利用,解得.,然后利用錐體體積公式求解.

(1)連結(jié)于點(diǎn),連結(jié).

因?yàn)樗倪呅?/span>為矩形,所以的中點(diǎn),

的中點(diǎn),所以,

平面平面,所以∥平面.

(2) 因?yàn)?/span>平面,四邊形為矩形,所以兩兩垂直,

為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向,的方向?yàn)?/span>軸的正方向,的方向?yàn)?/span>軸的正方向,為單位長(zhǎng),建立空間直角坐標(biāo)系.

設(shè),則,

所以,

設(shè)為平面的法向量,則,

可取 ,

為平面的一個(gè)法向量,由題設(shè)知

,解得.

因?yàn)?/span>的中點(diǎn),設(shè)的中點(diǎn),

,且,⊥面,

故有三棱錐的高為,

三棱錐的體積

所以三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批蘋果中隨機(jī)抽取50個(gè),其質(zhì)量(單位:)的頻數(shù)分布表如下:

分組

頻數(shù)

5

10

20

15

用分層隨機(jī)抽樣的方法從質(zhì)量在內(nèi)的蘋果中共抽取4個(gè),再?gòu)某槿〉?/span>4個(gè)蘋果中任取2個(gè),則有1個(gè)蘋果的質(zhì)量在內(nèi)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),不等式對(duì)恒成立.

(1)求函數(shù)的極值和實(shí)數(shù)的值;

(2)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).若存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列滿足,點(diǎn)在直線.

1)求數(shù)列,的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)和

3)若,對(duì)所有的正整數(shù)都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè),求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),不等式對(duì)恒成立.

(1)求函數(shù)的極值和函數(shù)的圖象在點(diǎn)處的切線方程;

(2)求實(shí)數(shù)的取值的集合;

(3)設(shè),函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若關(guān)于的不等式至少有一個(gè)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線C交于兩點(diǎn).

1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù) 的最大值;

(2)設(shè) ,且 ,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案