在中,角所對邊分別為,已知,且最長邊的邊長為.求:
(1)角的正切值及其大。
(2)最短邊的長.
(1);(2)最短邊為.
解析試題分析:(1)先用誘導(dǎo)公式轉(zhuǎn)化:,然后利用兩角和的正切公式進(jìn)行計(jì)算,得到的值,結(jié)合與特殊角的三角函數(shù)值可得到角;(2)先結(jié)合(1)中所求得的角及,判斷出最小的角為,故最小的邊為,最長邊為,然后計(jì)算出,再由正弦定理:可計(jì)算出最小邊的值.
試題解析:(1)
4分
∵,∴ 6分
(2)∵,∴均為銳角,則,又為鈍角
∴最短邊為,最長邊長為 8分
由,解得 10分
由,∴ 13分.
考點(diǎn):1.誘導(dǎo)公式;2.兩角和的正切公式;3.同角三角函數(shù)的基本關(guān)系式;4.正弦定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù),若函數(shù)的圖象與的圖象關(guān)于坐標(biāo)原點(diǎn)對稱.
(1)求函數(shù)在區(qū)間上的最大值,并求出此時(shí)的取值;
(2)在中,分別是角的對邊,若,,,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C的對邊分別為a,b,c,已知sinAsinB+sinBsinC+cos =2B=1.
(1)求證:a,b,c成等差數(shù)列;
(2)若C=,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a,b,c分別為角A,B,C的對邊.已知a=1,b=2,sinC=(其中C為銳角).
(1)求邊c的值.
(2)求sin(C-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的內(nèi)角為A、B、C,其對邊分別為a、b、c,B為銳角,向量m=(2sin B,-),n=,且m∥n
(1)求角B的大;
(2)如果b=2,求S△ABC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com